Redis——某马点评day02——商铺缓存

什么是缓存

添加Redis缓存

添加商铺缓存

Controller层中

    /*** 根据id查询商铺信息* @param id 商铺id* @return 商铺详情数据*/@GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {return shopService.queryById(id);}

Service层中

 */
@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {String key="cache:shop:" + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//5.不存在,返回错误return Result.fail("店铺不存在");}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop));//7.返回return Result.ok(shop);}
}

练习添加店铺类型缓存

Controller层中

@RestController
@RequestMapping("/shop-type")
public class ShopTypeController {@Resourceprivate IShopTypeService typeService;@GetMapping("list")public Result queryTypeList() {return typeService.queryTypeList();}
}

Service层中

    @Overridepublic Result queryTypeList() {String key="cache:shopType";//1.从Redis查询缓存String shopType = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopType)) {//3.存在,直接返回List<ShopType> typeList = JSONUtil.toList(shopType, ShopType.class);return Result.ok(typeList);}//4.不存在,查询数据库List<ShopType> typeList = query().orderByAsc("sort").list();//5.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(typeList));//7.返回return Result.ok(typeList);}

缓存更新策略

 通常选择的方案都是第一种

单体系统可以通过@Transactional注解完成事务。

通常是先操作数据库,再删除缓存,出现问题的几率极小。

 

 实现商铺缓存和数据库的双写一致

第一个地方,写入Redis时加上超时时间。 

  //6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);

 第二个地方

controller中

    /*** 更新商铺信息* @param shop 商铺数据* @return 无*/@PutMappingpublic Result updateShop(@RequestBody Shop shop) {return shopService.update(shop);}

service中

    @Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}

缓存穿透

布隆过滤器的实现不是真的存储数据,而是用某种Hash算法计算之后用二进制压缩之类的方法保存是否存在。但是,也有可能多个数据hash值相同导致错误结果。

编码解决商铺查询的缓存穿透(缓存空对象做法)

 代码修改

    @Overridepublic Result queryById(Long id) {String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return Result.fail("店铺不存在");}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return Result.fail("店铺不存在");}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);//7.返回return Result.ok(shop);}

 限流可以用sentinel实现.

缓存雪崩

宕机时降级限流也是用sentinel实现。

nginx缓存也是一级缓存.

tmd,一直在说springcloud里面有讲。

缓存击穿

常见解决方案

这里可以参考一下redisson的源码设计思路,设计一个监听通知机制! 

逻辑过期解决方案不会设置ttl过期时间,而是新增一个exprie字段,从redis里面查询发现是过期数据时就需要加锁开启一个新线程去更新缓存,然后直接返回旧数据。有别的线程来获取锁失败时说明已经有线程在进行更新,所以就直接返回过期数据,避免了过多线程等待锁。

 

利用互斥锁解决缓存击穿问题(重点)

这里的锁不能用lock和synchronized进行互斥实现,这两个会一直等待.这里用到Redis的一个命令setnx, 这个是一旦设置之后就不能修改,只能删除,但是如果因为意外原因导致迟迟不能删除会有大问题,所以这里会给锁设置一个有效期.

 代码修改

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {//缓存穿透//Shop shop=queryWithPassThrouh(id);//互斥锁解决缓存击穿Shop shop = queryWithMutex(id);if(shop==null){return Result.fail("店铺不存在!");}//7.返回return Result.ok(shop);}public Shop queryWithMutex(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.实现缓存重建//4.1获取互斥锁String lockkey="lock:shop:"+id;Shop shop = null;try {boolean isLock = tryLock(lockkey);//4.2判断是否获取成功if(!isLock){//4.3失败,休眠并重试Thread.sleep(50);return  queryWithMutex(id);   //这里有可能会出现栈溢出的情况。}//获取成功之后应该再次检查缓存是否存在,有可能别的线程已经重建完了缓存,所以这里就无需再重建缓存shopJson = stringRedisTemplate.opsForValue().get(key);//再次判断是否存在if (StrUtil.isNotBlank(shopJson)) {//存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//4.4根据id查询数据库shop = getById(id);//模拟重建的延时Thread.sleep(200);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e) {throw new RuntimeException(e);} finally {//7.释放互斥锁unlock(lockkey);}//8.返回return shop;}public Shop queryWithPassThrouh(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return shop;}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);//7.返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}@Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}
}

这里可以上Jmeter进行压测,上100个线程进行测试

但是最终实际只查询了一次数据库. 

利用逻辑过期解决缓存击穿问题(重点)

 为了能增加一个逻辑过期时间的字段,新建一个对象

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

代码修改

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {//缓存穿透//Shop shop=queryWithPassThrouh(id);//互斥锁解决缓存击穿
//        Shop shop = queryWithMutex(id);//逻辑过期解决缓存击穿问题Shop shop = queryWithLogicalExpire(id);if(shop==null){return Result.fail("店铺不存在!");}//7.返回return Result.ok(shop);}private static final ExecutorService CACHE_REBUILD_EXECUTOR= Executors.newFixedThreadPool(10);public Shop queryWithLogicalExpire(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isBlank(shopJson)) {//3.存在,直接返回nullreturn null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);Shop shop = JSONUtil.toBean((JSONObject)redisData.getData(), Shop.class);LocalDateTime expireTime = redisData.getExpireTime();//5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())){//5.1未过期,直接返回店铺信息return shop;}//5.2已过期,需要缓存重建//6.缓存重建//6.1获取互斥锁String lockKey=LOCK_SHOP_KEY+id;boolean isLock = tryLock(lockKey);//6.2判断是否获取锁成功if(isLock){//这里应该再次检测缓存是否过期,做双重判断,如果没过期就不需重建了,因为可能别的线程已经重建了shopJson = stringRedisTemplate.opsForValue().get(key);redisData = JSONUtil.toBean(shopJson, RedisData.class);expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){//返回前先释放锁unlock(lockKey);//5.1未过期,直接返回店铺信息return shop;}//6.3成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {//重建缓存this.saveShop2Redis(id,20L);} catch (Exception e) {throw new RuntimeException(e);} finally {//释放锁unlock(lockKey);}});}//6.4失败,返回过期商铺信息。return shop;}public Shop queryWithMutex(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.实现缓存重建//4.1获取互斥锁String lockkey="lock:shop:"+id;Shop shop = null;try {boolean isLock = tryLock(lockkey);//4.2判断是否获取成功if(!isLock){//4.3失败,休眠并重试Thread.sleep(50);return  queryWithMutex(id);   //这里有可能会出现栈溢出的情况。}//获取成功之后应该再次检查缓存是否存在,有可能别的线程已经重建完了缓存,所以这里就无需再重建缓存shopJson = stringRedisTemplate.opsForValue().get(key);//再次判断是否存在if (StrUtil.isNotBlank(shopJson)) {//存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//4.4根据id查询数据库shop = getById(id);//模拟重建的延时//Thread.sleep(200);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e) {throw new RuntimeException(e);} finally {//7.释放互斥锁unlock(lockkey);}//8.返回return shop;}public Shop queryWithPassThrouh(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return shop;}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);//7.返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}public void saveShop2Redis(Long id,Long expireSeconds) throws InterruptedException {//1.查询店铺数据Shop shop = getById(id);//模拟延时
//        Thread.sleep(200);//2.封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));//3.写入RedisstringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));}@Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}
}

缓存工具封装(重点)

封装工具类里用到的实体

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

工具类代码

@Slf4j
@Component
public class CacheClient {@Resourceprivate StringRedisTemplate stringRedisTemplate;String LOCK_SHOP_KEY="lock:shop:";public CacheClient(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public  void set(String key, Object value, Long time, TimeUnit timeUnit){stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value),time,timeUnit);}public  void setWithLogicalExpire(String key, Object value, Long time, TimeUnit timeUnit){//设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(timeUnit.toSeconds(time)));//写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback, Long time, TimeUnit timeUnit){String key=keyPrefix+id;//1.从Redis查询缓存String json = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(json)) {//3.存在,直接返回return  JSONUtil.toBean(json, type);}//判断命中的是否是空值if(json!=null){//返回一个错误信息return null;}//4.不存在,根据id查询数据库R r=dbFallback.apply(id);//5.不存在,返回错误if (r==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",2L, TimeUnit.MINUTES);return null;}//6.存在,写入Redisthis.set(key,r,time,timeUnit);//7.返回return r;}private static final ExecutorService CACHE_REBUILD_EXECUTOR= Executors.newFixedThreadPool(10);public <R,ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback, Long time, TimeUnit timeUnit){String key=keyPrefix+ id;//1.从Redis查询缓存String json = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isBlank(json)) {//3.存在,直接返回nullreturn null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);R r = JSONUtil.toBean((JSONObject)redisData.getData(), type);LocalDateTime expireTime = redisData.getExpireTime();//5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())){//5.1未过期,直接返回店铺信息return r;}//5.2已过期,需要缓存重建//6.缓存重建//6.1获取互斥锁String lockKey=LOCK_SHOP_KEY+id;boolean isLock = tryLock(lockKey);//6.2判断是否获取锁成功if(isLock){//这里应该再次检测缓存是否过期,做双重判断,如果没过期就不需重建了,因为可能别的线程已经重建了json = stringRedisTemplate.opsForValue().get(key);redisData = JSONUtil.toBean(json, RedisData.class);r = JSONUtil.toBean((JSONObject)redisData.getData(), type);expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){//返回前先释放锁unlock(lockKey);//5.1未过期,直接返回店铺信息return r;}//6.3成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {//重建缓存//查询数据库R r1 = dbFallback.apply(id);//写入Redisthis.setWithLogicalExpire(key,r1,time,timeUnit);} catch (Exception e) {throw new RuntimeException(e);} finally {//释放锁unlock(lockKey);}});}//6.4失败,返回过期信息。return r;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}
}

Service层修改后代码

里面有缓存穿透的调用,也有缓存击穿的调用.

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Resourceprivate CacheClient cacheClient;@Overridepublic Result queryById(Long id) {//缓存穿透Shop shop=cacheClient.queryWithPassThrough(CACHE_SHOP_KEY,id, Shop.class,id2->getById(id2),CACHE_SHOP_TTL,TimeUnit.MINUTES);//Shop shop=cacheClient.queryWithPassThrough(CACHE_SHOP_KEY,id, Shop.class,this::getById,,CACHE_SHOP_TTL,TimeUnit.MINUTES);//互斥锁解决缓存击穿//Shop shop = queryWithMutex(id);//逻辑过期解决缓存击穿问题
//        Shop shop = cacheClient
//                .queryWithLogicalExpire(CACHE_SHOP_KEY,id,Shop.class,this::getById,CACHE_SHOP_TTL,TimeUnit.SECONDS);if(shop==null){return Result.fail("店铺不存在!");}//7.返回return Result.ok(shop);}@Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}
}

内容总结:

去看文档资料里面xmind文档,那个里面总结的很好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/192351.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文心版吴恩达课程:语义核心(Semantic Kernel)插件的商业应用

文心版吴恩达课程&#xff1a;语义核心&#xff08;Semantic Kernel&#xff09;插件的商业应用 Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, P…

leetcode:225. 用队列实现栈

一、题目 链接&#xff1a;225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; 函数原型&#xff1a; typedef struct { } MyStack; MyStack* myStackCreate() void myStackPush(MyStack* obj, int x) int myStackPop(MyStack* obj) int myStackTop(MyStack* obj) …

代码随想录刷题题Day4

刷题的第四天&#xff0c;希望自己能够不断坚持下去&#xff0c;迎来蜕变。&#x1f600;&#x1f600;&#x1f600; 刷题语言&#xff1a;C / Python Day4 任务 ● 24. 两两交换链表中的节点 ● 19.删除链表的倒数第N个节点 ● 面试题 02.07. 链表相交 ● 142.环形链表II 1 …

大数据技术之Flume(超级详细)

大数据技术之Flume&#xff08;超级详细&#xff09; 第1章 概述 1.1 Flume定义 Flume是Cloudera提供的一个高可用的&#xff0c;高可靠的&#xff0c;分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构&#xff0c;灵活简单。 1.2 Flume组成架构 Flume组成架构如…

react-route-dom 实现简单的嵌套路由

最终效果 点击 to test1 点击to test2 > to test21 点击to test2 > to test22 代码如下 path: "page",element: <父组件 />,children: [{ path: "test1", element: <Test1 /> },{path: "test2",element: <Test2 />…

Springboot自定义starter

一、start背景和简介 1.背景 工作中经常需要将多个springboot项目共同的非业务模块抽取出来&#xff0c;比如访问日志、维护请求上下文中的用户信息或者链路id等等。此次模拟的是请求中用户信息维护&#xff0c;方便整个请求中用户信息的取用。 2.作用 根据项目组的实际需求…

【WPF.NET开发】创建简单WPF应用

本文内容 先决条件什么是 WPF&#xff1f;配置 IDE创建项目设计用户界面 (UI)调试并测试应用程序 通过本文你将熟悉在使用 Visual Studio 开发应用程序时可使用的许多工具、对话框和设计器。 你将创建“Hello, World”应用程序、设计 UI、添加代码并调试错误。在此期间&#…

策略设计模式

package com.jmj.pattern.strategy;public interface Strategy {void show(); }package com.jmj.pattern.strategy;public class StrategyA implements Strategy{Overridepublic void show() {System.out.println("买一送一");} }package com.jmj.pattern.strategy;p…

Raft 算法

Raft 算法 1 背景 当今的数据中心和应用程序在高度动态的环境中运行&#xff0c;为了应对高度动态的环境&#xff0c;它们通过额外的服务器进行横向扩展&#xff0c;并且根据需求进行扩展和收缩。同时&#xff0c;服务器和网络故障也很常见。 因此&#xff0c;系统必须在正常…

组件化编程

hello&#xff0c;我是小索奇&#xff0c;精心制作的Vue系列持续发放&#xff0c;涵盖大量的经验和示例&#xff0c;如果对您有用&#xff0c;可以点赞收藏哈~ 组件化编程 组件是什么&#xff1f; 一句话概括就是&#xff1a;实现特定功能的模块化代码单元 vm就是大哥&#xff…

flink源码分析之功能组件(四)-slot管理组件II

简介 本系列是flink源码分析的第二个系列&#xff0c;上一个《flink源码分析之集群与资源》分析集群与资源&#xff0c;本系列分析功能组件&#xff0c;kubeclient&#xff0c;rpc&#xff0c;心跳&#xff0c;高可用&#xff0c;slotpool&#xff0c;rest&#xff0c;metrics&…

各种外部排序的总结

多路归并 败者树 置换选择排序 最佳归并树

linux进程优先级_nice

4.1.3.4 进程优先级&#xff1a;nice nice以更改过的优先序来执行程序&#xff0c;如果未指定程序&#xff0c;则会印出目前的排程优先序&#xff0c;内定的 adjustment 为 10&#xff0c;范围为 -20&#xff08;最高优先序&#xff09;到 19&#xff08;最低优先序&#xff0…

认识K线形态,把握买入卖出时机

一、认识K线 1、K线的含义 股票一天之内有4个最关键的价格&#xff0c;开盘价、收盘价、最高价和最低价&#xff0c;把这个价格显示在图上就是K线图。 以金斗云智投电脑版为例&#xff0c;打开软件&#xff0c;任意搜索一支个股&#xff0c;就可以看到这支股票的K线。 股市新…

数据链路层之网桥

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

更改AndroidStudio模拟器位置

C盘何等的珍贵&#xff0c;可是好多工具&#xff0c;软件非得默认安装在C盘。。导致C盘越来越紧张。。 在日常使用过程中&#xff0c;安装任何软件都会将其安装到非系统盘下&#xff0c;Android模拟器也不能例外。保护好C盘也是日常一个良好的习惯。 Android AVD默认路径&…

深入理解Servlet(下)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 在这一篇文章里&#x…

hive里如何高效生成唯一ID

常见的方式&#xff1a; hive里最常用的方式生成唯一id&#xff0c;就是直接使用 row_number() 来进行&#xff0c;这个对于小数据量是ok的&#xff0c;但是当数据量大的时候会导致&#xff0c;数据倾斜&#xff0c;因为最后生成全局唯一id的时候&#xff0c;这个任务是放在一个…

工业机器视觉megauging(向光有光)使用说明书(十二,轻量级的visionpro)

关于最后一个工具的介绍&#xff1a;就是这个“相机图像” 我们可以鼠标双击点进去看一看&#xff1a; 在图像上点击&#xff0c;就可以截取一块图像&#xff0c;是可以放大缩小的&#xff0c;这个放大很low&#xff0c;是我以前研究缩放入门时的版本&#xff0c;本想删除&…

机器学习笔记 - 异常检测之OneClass SVM算法简述

一、异常检测是什么? 如下图,理想中我们可以找到一个框住大部分正常样本的决策边界,而在边界外部的数据点(蓝点)即视为异常。 但实际情况下数据都没有标签,因此很难定义正常还是不正常。异常检测的主要挑战如下:正常与异常行为之间的界限往往并不明确、不同的应…