一、哈希函数
1.安全性质
1)抗第一原像攻击(Preimage Resistance)
给定哈希后的值,很难找到哈希前的原消息。这很好理解,需要哈希函数具有单向性。
一个简单的例子就是密码存储系统,用户登录服务器需要密码匹配,服务器出于安全考虑不会存储用户密码,会存储用户密码的哈希值,这样,每次用户发来密码,进行哈希来看是否一致。这样的话,即使黑客获得了用户密码的哈希值,也没办法登录系统。
2)抗第二原像攻击(Second Preimage Resistance)
给定消息m和哈希后的值,很难找到另一个消息n,使得n哈希后的值和m哈希后的值一样。
一个简单的例子是软件下载时使用哈希来校验文件的integrity,用户下载软件后,使用哈希函数得到值,来和开发者提供的哈希值对比,如果一致就认为下载的文件没有被篡改。这里如果黑客可以通过开发者提供的哈希值和文件,找到一个哈希值一样的文件,那么他就可以替换掉这个文件。
3)碰撞避免(Collision Resistance)
对于一个哈希函数,对于找到两个具有相同哈希值的消息m,n是计算上不可能的。尽管哈希是理论上无限的域向固定域的映射,总会碰撞,但是要保证计算上找不到这个碰撞。
一个简单的例子是,发送信息的人本来就是黑客。例如b找到了两个相同哈希值的文件,他让a签署,文件1只需要a付出很小的代价,而文件2需要a付出很大的代价。那么b就将文件1发给a签,签完之后说a签的是文件2。
2.SHA-1
任意长比特串-->160bits哈希值
1)padding
先在后面补1,然后补0直到长度L%512=(512-64),因为sha-1每次对512bit做处理,所以整体长度一定是512的倍数,那么为什么要512-64呢,因为最后64位要留着指示消息的长度,注意这里消息的长度指的是padding前的初始长度。
2)然后就是计算了,取第一个512bit和初始值做计算,计算结果160bit作为初始值和下一512bit做计算,这样一直下去最后产生160bit的哈希值。
看看每512bit这个计算具体是如何做的。
首先512bit下来了将他扩展成80个w,每个w是32bit。前16个w直接照抄原来的512bit,之后每个wt都通过以下式子计算得出,s几就是循环左移几位。
得到80个w之后开始计算,先拿初始值填充abcde,然后每个w进行一轮计算。
这是前20个w进行的前20轮计算的例子,总共的80轮只有f和w不一样,f是每20轮有一个f,而80轮的w对应先前生成的80个w。
这个计算就是把先前的abcde分别做一些移位、置换之类的操作,生成新的abcde。
80轮之后,把最后生成的abcde和一开始的初始值分别相加,生成这一阶段的最终的160bit值,如果还有下一阶段,那么这160bit值就是下一阶段的初始值。
注意这里所有的+都是模(2的32次方)加。
3.SHA们
不同版本的sha的参数的对比
4.生日攻击
根据生日悖论,一个群体中有两个人生日是同一天的概率比直觉要大。
对于一个大小为2的n次方的哈希输出空间,找到两个同样哈希值的输入,在尝试2的n/2次方次时,概率为50%。
那么这里有一个攻击的例子,a产生消息给b签字。
a产生2的n/2次方种同一正常消息的变种(就类似于我是老师/老师是我)这样的变种,就对应2的n/2次方个哈希值。然后再产生2的n/2次方种个诈骗q消息。这样,正常消息和诈骗消息中有很大概率有相同哈希值的,这样他就找到了一组相同哈希值的消息,只用了2的(n/2+1)次方次尝试,这比正常的暴力破解平均2的n-1次方要快了不少。
二、消息摘要(Message Digest)
很多时候消息并不在意confidentiality,比如一些广播包,亦或者刚才提到的软件下载。只需要保证消息的integrity就好了,那么如果还是对消息加密的话,尽管可以保证integrity(因为加密之后别人没法篡改,篡改了解密出来就是乱码了),但会有很大的不必要的开销,相当于做了额外的工作,那么这个时候可以采用一种简单的模式,那就是把消息哈希之后,把哈希值附在消息后面传。收包的收到之后对消息哈希,然后比对自己哈希出来的和对方传来的,一致就认为没问题。
但是如果有人在途中同时改了消息和消息摘要,就不行了。
三、MAC(Message Authentication Code)消息认证码
双方共享一个秘密(一串数,一个密钥),发送方将这个秘密和消息m链接,然后哈希,将哈希附在消息后面一起发送,接收方收到之后,将秘密和消息m链接,然后哈希,发现得到的值和发送方发来的一致,那么就认为消息未被篡改。
这里就是通过双方共享密钥来做了认证。
但是这里还有一个问题,他不能抗否认,就是这个key是双方都有的,他会耍赖说这个消息不是我发的,是你发的。要做抗否认(Non-repudiation),就需要下面讲的数字签名技术。
这里再介绍一个MAC算法,HMAC。这个的设计理念就很OCP,他想直接套现有的哈希函数,并且让以后的哈希函数亦可以直接套进来。
首先把密钥用0padding成哈希的分组长度,然后在和ipad做异或,作为进入哈希的第一个块,然后进哈希函数,出来哈希函数对应的n比特哈希值。
然后还要走第二轮,第一个块还是密钥用0padding成哈希的分组长度异或上另一个op,第二块就是刚才生成的n比特哈希,这里注意sha是有自己的padding机制的,所以这里不用padding。这两个块再过一遍哈希,得到的就是消息认证码。
四、数字签名
要做抗否认(Non-repudiation),那就不能使用双方的共同秘密,就要用到只有一个人有的,且别人都不知道的,那就是公钥技术。
所以这样就可以先把消息哈希,然后用自己的私钥签名,然后再把这个结果附在消息后面传输。对面收到后,对消息哈希得到哈希值,然后再拿你的公钥解你附在后面的签名后的哈希值,这样匹配了,就达到了(integrity),且这是拿你的私钥签名的,没法抵赖(Non-repudiation)。