SpringBoot 集成 ChatGPT,实战附源码

1 前言

在本文中,我们将探索在 Spring Boot 应用程序中调用 OpenAI ChatGPT API 的过程。我们的目标是开发一个 Spring Boot 应用程序,能够利用 OpenAI ChatGPT API 生成对给定提示的响应。

您可能熟悉 ChatGPT 中的术语“提示”。在 ChatGPT 或类似语言模型的上下文中,提示是指用户提供的用于生成响应的输入或初始文本。它是您输入到模型中以获得相关输出的文本或查询。

提示本质上是作为语言模型理解和生成连贯响应的指令或起点。提示的质量和清晰度会显著影响模型提供准确且相关的信息或响应的能力。

2 什么是 ChatGPT?

我向 ChatGPT 提出了这个问题,看看它会产生什么反应。

在这里插入图片描述

ChatGPT 是一种生成式人工智能,允许用户输入提示并接收类似人类的图像、文本或视频形式的输出,所有这些都是由人工智能生成的。

ChatGPT 目前使用 GPT-3.5 模型,通过微调过程改进算法。然而,增强版本 ChatGPT Plus 包含了 GPT-4 模型。此升级版本拥有更快的响应时间,支持互联网插件,并展示了处理图像描述、图像标题生成等复杂任务的改进功能。

OpenAI 将 GPT-4 描述为比其前身 GPT-3.5 先进十倍。这一进步使模型能够表现出更好的上下文理解和细微差别,从而导致更精确和连贯的响应。

3 OpenAI ChatGPT API

我们将调用create chat completion API (POST https://api.openai.com/v1/chat/completions )来生成对提示的响应。让我们探索一下 OpenAI ChatGTP API。

我们需要发送什么请求来调用 OpenAI API?

访问“create chat completion API ” 链接后,可以看到有关端点、请求和响应的以下信息。

端点:POST https://api.openai.com/v1/chat/completions

转到 Playgroud 并输入任何消息,例如“什么是 Spring Boot?”

在这里插入图片描述

现在点击“查看代码”。您将看到提示符“ What is spring boot?”的 curl 命令。”。

在这里插入图片描述
复制命令并导入到postman客户端中。

在这里插入图片描述
这是我们传递的请求,用于从 OpenAI 完成 API 获取响应。

检查 API 的基本请求参数:

  1. Model: 该参数指定请求将发送到的模型的版本。存在各种模型版本,为此,我们将使用 gpt-3.5-turbo 模型,这是最新的公开版本。
  2. Messages: 该参数作为模型的提示。每条消息都包含两个基本字段:“role”和“content”。“role”字段指定消息发送者,在请求中表示为“用户”,在响应中表示为“助理”。“content”字段包含实际的消息内容。

ModelMessage 是 API 请求中必须包含的参数。

其他可选参数包括:

  1. n: 默认值为1,表示为每个输入消息生成的响应数。
  2. temperature: 默认值为1,范围为0到2。该参数调节响应的随机性。较高的值会增加随机性,而较低的值会增强焦点和确定性。
  3. max_tokens: 默认情况下没有限制,但该参数允许您指定在响应中生成的最大令牌数量。事实证明,它在管理非常大的响应和控制成本方面非常有用。

在 Postman 中发出上述请求时,除非将 OpenAI API 密钥作为不记名令牌传递,否则将发生身份验证失败。必须包含 OpenAI API 密钥作为不记名令牌来验证 OpenAI ChatGPT 完成 API。

4 创建 OpenAI API 密钥

在此注册并创建您自己的 OpenAI API 密钥。

在这里插入图片描述

4.1 设置 Spring Boot 应用

现在让我们设置 Spring Boot 应用程序…

在这里插入图片描述
我们需要在 pom.xml 中添加以下依赖项

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId>
</dependency>

在 dtos 包下创建 ChatBotRequest、ChatBotResponse 和 Message DTO:

@Data
@NoArgsConstructor
@AllArgsConstructor
public class ChatBotRequest {private String model;private List<Message> messages;private int n;private double temperature;private int max_tokens;
}--------------------@Data
@AllArgsConstructor
@NoArgsConstructor
public class ChatBotResponse {private List<Choice> choices;@Data@AllArgsConstructor@NoArgsConstructorpublic static class Choice {private int index;private Message message;}
}--------------------@Data
@NoArgsConstructor
@AllArgsConstructor
public class Message {private String role;private String content;}

在application.properties文件中添加以下配置:

openai.chatgtp.model=gpt-3.5-turbo
openai.chatgtp.api.key=REPLACE_WITH_YOUR_API_KEY
openai.chatgtp.api.url=https://api.openai.com/v1/chat/completionsopenai.chatgtp.max-completions=1
openai.chatgtp.temperature=0
openai.chatgtp.max_tokens=100

4.2 RestTemplate配置

在配置包下创建一个类OpenAIChatGtpConfig:

@Configuration
public class OpenAIChatGtpConfig {@Value("${openai.chatgtp.api.key}")private String openaiApiKey;@Beanpublic RestTemplate restTemplate() {RestTemplate restTemplate = new RestTemplate();restTemplate.getInterceptors().add((request, body, execution) -> {request.getHeaders().add("Authorization", "Bearer " + openaiApiKey);return execution.execute(request, body);});return restTemplate;}
}
  • @Value(“${openai.chatgtp.api.key}”):此注释用于从应用程序的属性文件注入值。在本例中,它从属性文件中检索 OpenAI 的 API 密钥。
  • restTemplate.getInterceptors().add(…):配置拦截器RestTemplate。该拦截器被添加到拦截器列表中,负责在发送 HTTP 请求之前对其进行修改。
  • 拦截器 ( (request, body, execution) -> { … }) 将“Authorization”标头添加到 HTTP 请求中。标头包含格式为“Bearer {apiKey}”的 OpenAI API 密钥。

总之,此配置类设置了一个RestTemplate带有拦截器的 bean,该拦截器将 OpenAI API 密钥添加到“Authorization”标头,确保由此发出的后续 HTTP 请求经过RestTemplate身份验证。

4.3 API控制器

现在,我们可以继续创建 REST 控制器,负责利用之前配置的RestTemplate来发出 API 请求并处理相应的 API 响应。

在controllers包下创建一个类ChatBotController:

@RestController
public class ChatBotController {@Autowiredprivate RestTemplate restTemplate;@Value("${openai.chatgtp.model}")private String model;@Value("${openai.chatgtp.max-completions}")private int maxCompletions;@Value("${openai.chatgtp.temperature}")private double temperature;@Value("${openai.chatgtp.max_tokens}")private int maxTokens;@Value("${openai.chatgtp.api.url}")private String apiUrl;@PostMapping("/chat")public BotResponse chat(@RequestParam("prompt") String prompt) {BotRequest request = new BotRequest(model,List.of(new Message("user", prompt)),maxCompletions,temperature,maxTokens);BotResponse response = restTemplate.postForObject(apiUrl, request, BotResponse.class);return response;}
}

现在我们已经完成了编码。让我们测试一下应用程序…

在这里插入图片描述
使用 OpenAI ChatGPT Completion API 我们可以实现什么?

以下是使用 OpenAI Completion API 和 ChatGPT 等模型可以实现的一些功能:

  • 自然语言生成: 您可以出于各种目的生成类似人类的文本,例如内容创建、创意写作等。
  • 文本摘要: 您可以使用该模型来总结长文本或文章,将信息压缩为更短、更容易理解的形式。
  • 语言翻译: 将文本从一种语言翻译成另一种语言。
  • 文本完成: 您可以使用 ChatGPT 来完成句子或段落,这对于填充文本的缺失部分非常有用。
  • 问答: 您可以向模型提出问题,它可以根据给出的上下文提供答案。
  • 对话代理: 开发聊天机器人、虚拟助理或其他对话式人工智能应用程序,以提供客户支持、信息检索或与用户互动。
  • 代码生成: 生成代码片段或通过提供代码示例、解释和解决方案来协助编程任务。
  • 数据输入和表格填写: 使用模型自动填写表格或完成数据输入任务。
  • 创意写作: 生成诗歌、故事或其他创意内容。
  • 语言理解: 分析和理解用户查询或消息中的意图和情绪。
  • 模拟角色: 在虚构角色之间创建对话和互动,以讲故事或开发游戏。
  • 教育援助: 为学生的问题提供解释和答案或帮助完成家庭作业。
  • 内容推荐: 根据用户的偏好和查询向他们推荐内容、产品或服务。
  • 起草电子邮件或文档: 协助撰写电子邮件、报告或其他书面文档。
  • 模拟用户行为: 生成用户评论、评论或反馈以用于测试和培训目的。

这些只是使用 OpenAI Completion API 和 ChatGPT 等模型可以实现的一些示例。这些模型的多功能性使其对于各个行业的广泛应用都很有价值,包括教育、医疗保健、客户服务、内容生成等。请记住,生成的文本的质量可能会根据特定用例和提供给模型的输入数据而有所不同。

5 项目源码

https://github.com/363153421/chatgpt-springboot-integration

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/190061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何本地搭建个人hMailServer邮件服务并实现远程发送邮件

文章目录 前言1. 安装hMailServer2. 设置hMailServer3. 客户端安装添加账号4. 测试发送邮件5. 安装cpolar6. 创建公网地址7. 测试远程发送邮件8. 固定连接公网地址9. 测试固定远程地址发送邮件 前言 hMailServer 是一个邮件服务器,通过它我们可以搭建自己的邮件服务,通过cpola…

VLAN间路由详细讲解

本次实验拓扑的主要概述以及设计到的相关技术 VLAN技术&#xff1a; VLAN&#xff08;Virtual Local Area Network&#xff09;即虚拟局域网&#xff0c;是将一个物理的LAN在逻辑上划分成多个广播域的通信技术。 每个VLAN是一个广播域&#xff0c;VLAN内的主机间可以直…

YOLOv8改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)

一、本文介绍 本文给大家带来的改进内容是SCConv&#xff0c;即空间和通道重构卷积&#xff0c;是一种发布于2023.9月份的一个新的改进机制。它的核心创新在于能够同时处理图像的空间&#xff08;形状、结构&#xff09;和通道&#xff08;色彩、深度&#xff09;信息&#xf…

数字图像处理(实践篇) 十六 基于分水岭算法的图像分割

目录 一 分水岭算法 二 利用OpenCV实现分水岭算法的过程 三 实践 一 分水岭算法 基于任何灰度图像都可以视为地形表面&#xff0c;其中高强度表示山峰和山丘&#xff0c;而低强度表示山谷。首先&#xff0c;开始用不同颜色的水&#xff08;标签&#xff09;填充每个孤立的山…

医院智能导诊小程序源码 智能导诊源码

医院智能导诊系统、AI智能导诊、现有的ai模型做医院智能导诊、智能就医引导系统、人工智能挂号、医院AI全流程智能导诊系统。 智能导诊 可以根据用户症状描述精准推荐科室及医生智能学习医院历史数据及自动进行科室对照,与医院的系统连接后,患者可直接完成预约。 一、系统概述…

flutter-一个可以输入的数字增减器

效果 参考文章 代码 在参考文章上边&#xff0c;主要是改了一下样式&#xff0c;逻辑也比较清楚&#xff0c;对左右两边添加增减方法。 我在此基础上加了_numcontroller 输入框的监听。 加了数字输入框的控制 keyboardType: TextInputType.number, //设置键盘为数字 inputF…

JavaScript 数据结构

JavaScript 数据结构 目录 JavaScript 数据结构 一、标识符 二、关键字 三、常量 四、变量 每一种计算机编程语言都有自己的数据结构&#xff0c;JavaScript脚本语言的数据结构包括&#xff1a;标识符、常量、变量、保留字等。 一、标识符 标识符&#xff0c;说白了&…

Flutter学习(七)GetX offAllNamed使用的问题

背景 使用GetX开发应用的时候&#xff0c;也可能有人调用过offAllNamed&#xff0c;会发现所有controller的都被销毁了 环境 win10 getx 4.6.5 as 4 现象 从A页面&#xff0c;跳转到B页面&#xff0c;然后调用offAllNamed进行回到A页面&#xff0c;观察controller声明周期…

如何从 Android 手机恢复已删除的视频

您是否曾经丢失过手机中的任何数据&#xff1f;如今&#xff0c;由于 Android 上的应用程序崩溃、根进程停止、Android 更新失败等等&#xff0c;数据丢失很普遍。错误删除是丢失视频、录音和音乐副本的另一种可能的方式。 丢失包含有关新完成的项目的重要信息的视频或婚礼、周…

零基础OpenAi应用商店开发

在本月OpenAi开发者大会上&#xff0c;OpenAI宣布推出了GPTs功能&#xff0c;也就是GPT Store&#xff0c;类似App Store的应用商店&#xff0c;任何用户都可以去参与创建应用。通过该功能&#xff0c;用户可以定制化打造自己的GPT&#xff0c;并公开分享至OpenAI的应用商店。定…

12.1 二叉树简单题

101. 对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true 思路&#xff1a;对称二叉树 有一个特点是以 中左右顺序遍历左子树的结果会等于 中右左顺序遍历右子树的结果…

服务器中深度学习环境的配置

安装流程 11.17 日&#xff0c;周末去高校参加学术会议&#xff0c;起因&#xff0c; 由于使用了某高校内的公共有线网络&#xff0c; 远程连接服务器后&#xff0c;黑客利用 ssh 开放的 22 端口&#xff0c; 篡改了主机的配置&#xff0c; 使得只要一连上网络&#xff0c; 服…

接口测试基础知识

一、接口测试简介 什么是接口测试&#xff1f; 接口测试是测试系统组件间接口的一种测试&#xff0c;主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。 测试的重点&#xff1a; 检查数据的交换&#xff0c;传递和控制管理过程&#xff1b;检查系统间的相互…

『吴秋霖赠书活动 | 第五期』《Kubernetes原生微服务开发》

【作者主页】&#xff1a;吴秋霖 【作者介绍】&#xff1a;Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作&#xff01; 【作者推荐】&#xff1a;对JS逆向感兴趣的朋友可以关注《爬虫JS逆向实战》&#xff0c;对分布式爬虫平…

企业加密软件有哪些(公司防泄密软件)

企业加密软件是专门为企业设计的软件&#xff0c;旨在保护企业的敏感数据和信息安全。这些软件通过使用加密技术来对数据进行加密&#xff0c;使得数据在传输和存储过程中不会被未经授权的人员获取和滥用。 企业加密软件的主要功能包括数据加密、文件加密、文件夹加密、移动设备…

深度学习第4天:感知机模型

☁️主页 Nowl &#x1f525;专栏《机器学习实战》 《机器学习》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 ​ 文章目录 感知机模型介绍 神经网络搭建感知机 结构 准备训练数据 感知机的损失函数与优化方法 测试结果 完整代码 多层感知机 结语 感知机模…

优彩云采集器最新版免费下载,优彩云采集器免费

随着网络时代的发展&#xff0c;SEO&#xff08;Search Engine Optimization&#xff0c;搜索引擎优化&#xff09;已经成为网站推广和营销的关键一环。在SEO的世界里&#xff0c;原创内容的重要性愈发凸显。想要做到每天更新大量原创文章&#xff0c;并不是一件轻松的事情。优…

mybatis源码(五)springboot pagehelper实现查询分页

1、背景 springboot的pagehelper插件能够实现对mybatis查询的分页管理&#xff0c;而且在使用时只需要提前声明即可&#xff0c;不需要修改已有的查询语句。使用如下&#xff1a; 之前对这个功能一直很感兴趣&#xff0c;但是一直没完整看过&#xff0c;今天准备详细梳理下。按…

大数据湖项目建设方案:文档全文101页,附下载

关键词&#xff1a;大数据解决方案&#xff0c;数据湖解决方案&#xff0c;数据治理解决方案&#xff0c;数据中台解决方案 一、大数据湖建设思路 1、明确目标和定位&#xff1a;明确大数据湖的目标和定位是整个项目的基础&#xff0c;这可以帮助我们确定项目的内容、规模、所…

C语言--每日选择题--Day32

如果大家对读研究生和就业不知道如何抉择&#xff0c;我的建议是看大家的经济基础&#xff0c;如果家里不是很需要你们工作&#xff0c;就读研提升自己的学历&#xff0c;反之就就业&#xff1b;毕竟经济基础决定上层建筑&#xff1b; 第一题 1. 下面代码的结果是&#xff1a;…