数字图像处理(实践篇) 十六 基于分水岭算法的图像分割

目录

一 分水岭算法

二 利用OpenCV实现分水岭算法的过程

三 实践


一 分水岭算法

        基于任何灰度图像都可以视为地形表面,其中高强度表示山峰和山丘,而低强度表示山谷。首先,开始用不同颜色的水(标签)填充每个孤立的山谷(局部最小值)。随着水位的上升,根据附近的山峰(梯度),来自不同山谷的水,显然具有不同的颜色,将开始合并。为了避免这种情况,我们需要在水汇合的位置建造水坝或屏障。如果继续注水和建造屏障的工作,直到所有的山峰都在水下。然后,之前创建的屏障会提供细分的结果。这就是分水岭背后的“哲学”。

        利用OpenCV实现分水岭算法的过程如下:

①首先,找到前景的近似估计值。可以使用 Otsu 的二值化操作实现。

②通过形态学处理对原始的图像img进行降噪操作。

注意:靠近物体中心的区域是前景,而远离物体的区域是背景。不确定的唯一区域是硬币的边界区域

③通过膨胀操作获取“确定的背景区域Background region"。

④利用距离变换函数cv2.distanceTransform()对图像进行处理,并对其结果进行阈值分割,得到”确定前景区域Front reign“。

⑤获取未知的区域UN。UN =img - Background region - Front reign

⑥利用cv.connectedComponents()实现图像的标注工作和对标注结果进行修正。

⑦使用分水岭分割函数cv.watershed()完成对图像的分割。

二 利用OpenCV实现分水岭算法的过程

①Otsu 的二值化操作的结果

img = cv2.imread(img_path)
im = img.copy()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

②图像降噪操作的结果。

kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)

③确定的背景区域Background region。

sure_bg = cv2.dilate(opening, kernel, iterations=3)

 

④确定的前景区域。

dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)

 

⑤unknown区域。

unknown = cv2.subtract(sure_bg, sure_fg)

⑥利用cv.connectedComponents()实现图像的标注,并且对标注结果进行修正。

ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers + 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0

⑦使用分水岭分割函数cv.watershed()完成对目标的分割处理。 

markers = cv2.watershed(im, markers)
# The boundary region will be marked with -1.

三 实践

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):img = cv2.imread(img_path)im = img.copy()gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# noise removalkernel = np.ones((3, 3), np.uint8)opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)# sure background areasure_bg = cv2.dilate(opening, kernel, iterations=3)# sure foreground areadist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)sure_fg = np.uint8(sure_fg)unknown = cv2.subtract(sure_bg, sure_fg)# Marker labellingret, markers = cv2.connectedComponents(sure_fg)# Add one to all labels so that sure background is not 0, but 1markers = markers + 1# Now, mark the region of unknown with zeromarkers[unknown == 255] = 0markers = cv2.watershed(im, markers)# The boundary region will be marked with -1.im[markers == -1] = [255, 255, 0]fig = plt.figure(figsize=(10, 10))img = dealImg(img)im = dealImg(im)titles = ["im", " OTSU", "open", "sure_bg", "sure_fg", "unknown", "result_im"]images = [img, thresh, opening, sure_bg, sure_fg, unknown, im]for i in range(7):plt.subplot(2, 4, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])#plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("test.jpg")pass
  • 效果图

         从上图中可以看出,对于某些硬币,它们接触的区域可以被正确分割开,而对于某些硬币,则没有分割开。

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/190051.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

医院智能导诊小程序源码 智能导诊源码

医院智能导诊系统、AI智能导诊、现有的ai模型做医院智能导诊、智能就医引导系统、人工智能挂号、医院AI全流程智能导诊系统。 智能导诊 可以根据用户症状描述精准推荐科室及医生智能学习医院历史数据及自动进行科室对照,与医院的系统连接后,患者可直接完成预约。 一、系统概述…

flutter-一个可以输入的数字增减器

效果 参考文章 代码 在参考文章上边,主要是改了一下样式,逻辑也比较清楚,对左右两边添加增减方法。 我在此基础上加了_numcontroller 输入框的监听。 加了数字输入框的控制 keyboardType: TextInputType.number, //设置键盘为数字 inputF…

JavaScript 数据结构

JavaScript 数据结构 目录 JavaScript 数据结构 一、标识符 二、关键字 三、常量 四、变量 每一种计算机编程语言都有自己的数据结构,JavaScript脚本语言的数据结构包括:标识符、常量、变量、保留字等。 一、标识符 标识符,说白了&…

Flutter学习(七)GetX offAllNamed使用的问题

背景 使用GetX开发应用的时候,也可能有人调用过offAllNamed,会发现所有controller的都被销毁了 环境 win10 getx 4.6.5 as 4 现象 从A页面,跳转到B页面,然后调用offAllNamed进行回到A页面,观察controller声明周期…

如何从 Android 手机恢复已删除的视频

您是否曾经丢失过手机中的任何数据?如今,由于 Android 上的应用程序崩溃、根进程停止、Android 更新失败等等,数据丢失很普遍。错误删除是丢失视频、录音和音乐副本的另一种可能的方式。 丢失包含有关新完成的项目的重要信息的视频或婚礼、周…

零基础OpenAi应用商店开发

在本月OpenAi开发者大会上,OpenAI宣布推出了GPTs功能,也就是GPT Store,类似App Store的应用商店,任何用户都可以去参与创建应用。通过该功能,用户可以定制化打造自己的GPT,并公开分享至OpenAI的应用商店。定…

12.1 二叉树简单题

101. 对称二叉树 给你一个二叉树的根节点 root , 检查它是否轴对称。 示例 1: 输入:root [1,2,2,3,4,4,3] 输出:true 思路:对称二叉树 有一个特点是以 中左右顺序遍历左子树的结果会等于 中右左顺序遍历右子树的结果…

服务器中深度学习环境的配置

安装流程 11.17 日,周末去高校参加学术会议,起因, 由于使用了某高校内的公共有线网络, 远程连接服务器后,黑客利用 ssh 开放的 22 端口, 篡改了主机的配置, 使得只要一连上网络, 服…

接口测试基础知识

一、接口测试简介 什么是接口测试? 接口测试是测试系统组件间接口的一种测试,主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。 测试的重点: 检查数据的交换,传递和控制管理过程;检查系统间的相互…

『吴秋霖赠书活动 | 第五期』《Kubernetes原生微服务开发》

【作者主页】:吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】:对JS逆向感兴趣的朋友可以关注《爬虫JS逆向实战》,对分布式爬虫平…

企业加密软件有哪些(公司防泄密软件)

企业加密软件是专门为企业设计的软件,旨在保护企业的敏感数据和信息安全。这些软件通过使用加密技术来对数据进行加密,使得数据在传输和存储过程中不会被未经授权的人员获取和滥用。 企业加密软件的主要功能包括数据加密、文件加密、文件夹加密、移动设备…

深度学习第4天:感知机模型

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 ​ 文章目录 感知机模型介绍 神经网络搭建感知机 结构 准备训练数据 感知机的损失函数与优化方法 测试结果 完整代码 多层感知机 结语 感知机模…

优彩云采集器最新版免费下载,优彩云采集器免费

随着网络时代的发展,SEO(Search Engine Optimization,搜索引擎优化)已经成为网站推广和营销的关键一环。在SEO的世界里,原创内容的重要性愈发凸显。想要做到每天更新大量原创文章,并不是一件轻松的事情。优…

mybatis源码(五)springboot pagehelper实现查询分页

1、背景 springboot的pagehelper插件能够实现对mybatis查询的分页管理,而且在使用时只需要提前声明即可,不需要修改已有的查询语句。使用如下: 之前对这个功能一直很感兴趣,但是一直没完整看过,今天准备详细梳理下。按…

大数据湖项目建设方案:文档全文101页,附下载

关键词:大数据解决方案,数据湖解决方案,数据治理解决方案,数据中台解决方案 一、大数据湖建设思路 1、明确目标和定位:明确大数据湖的目标和定位是整个项目的基础,这可以帮助我们确定项目的内容、规模、所…

C语言--每日选择题--Day32

如果大家对读研究生和就业不知道如何抉择,我的建议是看大家的经济基础,如果家里不是很需要你们工作,就读研提升自己的学历,反之就就业;毕竟经济基础决定上层建筑; 第一题 1. 下面代码的结果是:…

springsecurity的NullPointerException产生

springsecurity的NullPointerException产生 01 异常发生场景 当我使用springsecurity请求后端数据时 以下是报错代码 02 问题的产生原因 发生空指针异常,无非就几种 类对象没有初始化,地址默认为null指向的数据为空查找到的数据为空与数据类型冲突 …

最长连续递增序列

最长连续递增序列 描述 : 给定一个未经排序的整数数组&#xff0c;找到最长且 连续递增的子序列&#xff0c;并返回该序列的长度。 连续递增的子序列 可以由两个下标 l 和 r&#xff08;l < r&#xff09;确定&#xff0c;如果对于每个 l < i < r&#xff0c;都有 …

92基于matlab的引力搜索算法优化支持向量机(GSA-SVM)分类模型

基于matlab的引力搜索算法优化支持向量机&#xff08;GSA-SVM&#xff09;分类模型&#xff0c;以分类精度为优化目标优化SVM算法的参数c和g&#xff0c;输出分类可视化结果及适应度变化曲线。数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。 92 引力搜索算法…

数据结构 / 队列 / 循环队列 / 概念

1. 定义 为充分利用向量空间&#xff0c;克服假溢出现象的方法是&#xff1a;将向量空间想象为一个首尾相接的圆环&#xff0c;并称这种向量为循环向量。存储在其中的队列称为循环队列&#xff08;Circular Queue&#xff09;。循环队列是把顺序队列首尾相连&#xff0c;把存储…