error: #5: cannot open source input file “core_cmInstr.h“

GD32F103VET6和STM32F103VET6引脚兼容。

GD32F103VET6工程模板需要包含头文件:core_cmInstr.h和core_cmFunc.h,这个和STM32F103还是有区别的,否则会报错,如下:

 error:  #5: cannot open source input file "core_cmInstr.h": No such file or directory

贴出来,以便大家去下载,还要积分,找得还辛苦。

/**************************************************************************//*** @file     core_cmFunc.h* @brief    CMSIS Cortex-M Core Function Access Header File* @version  V3.02* @date     24. May 2012** @note* Copyright (C) 2009-2012 ARM Limited. All rights reserved.** @par* ARM Limited (ARM) is supplying this software for use with Cortex-M* processor based microcontrollers.  This file can be freely distributed* within development tools that are supporting such ARM based processors.** @par* THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.*******************************************************************************/#ifndef __CORE_CMFUNC_H
#define __CORE_CMFUNC_H/* ###########################  Core Function Access  ########################### */
/** \ingroup  CMSIS_Core_FunctionInterface\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions@{*/#if   defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */#if (__ARMCC_VERSION < 400677)#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif/* intrinsic void __enable_irq();     */
/* intrinsic void __disable_irq();    *//** \brief  Get Control RegisterThis function returns the content of the Control Register.\return               Control Register value*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{register uint32_t __regControl         __ASM("control");return(__regControl);
}/** \brief  Set Control RegisterThis function writes the given value to the Control Register.\param [in]    control  Control Register value to set*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{register uint32_t __regControl         __ASM("control");__regControl = control;
}/** \brief  Get IPSR RegisterThis function returns the content of the IPSR Register.\return               IPSR Register value*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{register uint32_t __regIPSR          __ASM("ipsr");return(__regIPSR);
}/** \brief  Get APSR RegisterThis function returns the content of the APSR Register.\return               APSR Register value*/
__STATIC_INLINE uint32_t __get_APSR(void)
{register uint32_t __regAPSR          __ASM("apsr");return(__regAPSR);
}/** \brief  Get xPSR RegisterThis function returns the content of the xPSR Register.\return               xPSR Register value*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{register uint32_t __regXPSR          __ASM("xpsr");return(__regXPSR);
}/** \brief  Get Process Stack PointerThis function returns the current value of the Process Stack Pointer (PSP).\return               PSP Register value*/
__STATIC_INLINE uint32_t __get_PSP(void)
{register uint32_t __regProcessStackPointer  __ASM("psp");return(__regProcessStackPointer);
}/** \brief  Set Process Stack PointerThis function assigns the given value to the Process Stack Pointer (PSP).\param [in]    topOfProcStack  Process Stack Pointer value to set*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{register uint32_t __regProcessStackPointer  __ASM("psp");__regProcessStackPointer = topOfProcStack;
}/** \brief  Get Main Stack PointerThis function returns the current value of the Main Stack Pointer (MSP).\return               MSP Register value*/
__STATIC_INLINE uint32_t __get_MSP(void)
{register uint32_t __regMainStackPointer     __ASM("msp");return(__regMainStackPointer);
}/** \brief  Set Main Stack PointerThis function assigns the given value to the Main Stack Pointer (MSP).\param [in]    topOfMainStack  Main Stack Pointer value to set*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{register uint32_t __regMainStackPointer     __ASM("msp");__regMainStackPointer = topOfMainStack;
}/** \brief  Get Priority MaskThis function returns the current state of the priority mask bit from the Priority Mask Register.\return               Priority Mask value*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{register uint32_t __regPriMask         __ASM("primask");return(__regPriMask);
}/** \brief  Set Priority MaskThis function assigns the given value to the Priority Mask Register.\param [in]    priMask  Priority Mask*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{register uint32_t __regPriMask         __ASM("primask");__regPriMask = (priMask);
}#if       (__CORTEX_M >= 0x03)/** \brief  Enable FIQThis function enables FIQ interrupts by clearing the F-bit in the CPSR.Can only be executed in Privileged modes.*/
#define __enable_fault_irq                __enable_fiq/** \brief  Disable FIQThis function disables FIQ interrupts by setting the F-bit in the CPSR.Can only be executed in Privileged modes.*/
#define __disable_fault_irq               __disable_fiq/** \brief  Get Base PriorityThis function returns the current value of the Base Priority register.\return               Base Priority register value*/
__STATIC_INLINE uint32_t  __get_BASEPRI(void)
{register uint32_t __regBasePri         __ASM("basepri");return(__regBasePri);
}/** \brief  Set Base PriorityThis function assigns the given value to the Base Priority register.\param [in]    basePri  Base Priority value to set*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{register uint32_t __regBasePri         __ASM("basepri");__regBasePri = (basePri & 0xff);
}/** \brief  Get Fault MaskThis function returns the current value of the Fault Mask register.\return               Fault Mask register value*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{register uint32_t __regFaultMask       __ASM("faultmask");return(__regFaultMask);
}/** \brief  Set Fault MaskThis function assigns the given value to the Fault Mask register.\param [in]    faultMask  Fault Mask value to set*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{register uint32_t __regFaultMask       __ASM("faultmask");__regFaultMask = (faultMask & (uint32_t)1);
}#endif /* (__CORTEX_M >= 0x03) */#if       (__CORTEX_M == 0x04)/** \brief  Get FPSCRThis function returns the current value of the Floating Point Status/Control register.\return               Floating Point Status/Control register value*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)register uint32_t __regfpscr         __ASM("fpscr");return(__regfpscr);
#elsereturn(0);
#endif
}/** \brief  Set FPSCRThis function assigns the given value to the Floating Point Status/Control register.\param [in]    fpscr  Floating Point Status/Control value to set*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)register uint32_t __regfpscr         __ASM("fpscr");__regfpscr = (fpscr);
#endif
}#endif /* (__CORTEX_M == 0x04) */#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */#include <cmsis_iar.h>#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */#include <cmsis_ccs.h>#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions *//** \brief  Enable IRQ InterruptsThis function enables IRQ interrupts by clearing the I-bit in the CPSR.Can only be executed in Privileged modes.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
{__ASM volatile ("cpsie i" : : : "memory");
}/** \brief  Disable IRQ InterruptsThis function disables IRQ interrupts by setting the I-bit in the CPSR.Can only be executed in Privileged modes.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
{__ASM volatile ("cpsid i" : : : "memory");
}/** \brief  Get Control RegisterThis function returns the content of the Control Register.\return               Control Register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
{uint32_t result;__ASM volatile ("MRS %0, control" : "=r" (result) );return(result);
}/** \brief  Set Control RegisterThis function writes the given value to the Control Register.\param [in]    control  Control Register value to set*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
{__ASM volatile ("MSR control, %0" : : "r" (control) );
}/** \brief  Get IPSR RegisterThis function returns the content of the IPSR Register.\return               IPSR Register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
{uint32_t result;__ASM volatile ("MRS %0, ipsr" : "=r" (result) );return(result);
}/** \brief  Get APSR RegisterThis function returns the content of the APSR Register.\return               APSR Register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
{uint32_t result;__ASM volatile ("MRS %0, apsr" : "=r" (result) );return(result);
}/** \brief  Get xPSR RegisterThis function returns the content of the xPSR Register.\return               xPSR Register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
{uint32_t result;__ASM volatile ("MRS %0, xpsr" : "=r" (result) );return(result);
}/** \brief  Get Process Stack PointerThis function returns the current value of the Process Stack Pointer (PSP).\return               PSP Register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
{register uint32_t result;__ASM volatile ("MRS %0, psp\n"  : "=r" (result) );return(result);
}/** \brief  Set Process Stack PointerThis function assigns the given value to the Process Stack Pointer (PSP).\param [in]    topOfProcStack  Process Stack Pointer value to set*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) );
}/** \brief  Get Main Stack PointerThis function returns the current value of the Main Stack Pointer (MSP).\return               MSP Register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
{register uint32_t result;__ASM volatile ("MRS %0, msp\n" : "=r" (result) );return(result);
}/** \brief  Set Main Stack PointerThis function assigns the given value to the Main Stack Pointer (MSP).\param [in]    topOfMainStack  Main Stack Pointer value to set*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) );
}/** \brief  Get Priority MaskThis function returns the current state of the priority mask bit from the Priority Mask Register.\return               Priority Mask value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
{uint32_t result;__ASM volatile ("MRS %0, primask" : "=r" (result) );return(result);
}/** \brief  Set Priority MaskThis function assigns the given value to the Priority Mask Register.\param [in]    priMask  Priority Mask*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{__ASM volatile ("MSR primask, %0" : : "r" (priMask) );
}#if       (__CORTEX_M >= 0x03)/** \brief  Enable FIQThis function enables FIQ interrupts by clearing the F-bit in the CPSR.Can only be executed in Privileged modes.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
{__ASM volatile ("cpsie f" : : : "memory");
}/** \brief  Disable FIQThis function disables FIQ interrupts by setting the F-bit in the CPSR.Can only be executed in Privileged modes.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
{__ASM volatile ("cpsid f" : : : "memory");
}/** \brief  Get Base PriorityThis function returns the current value of the Base Priority register.\return               Base Priority register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
{uint32_t result;__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );return(result);
}/** \brief  Set Base PriorityThis function assigns the given value to the Base Priority register.\param [in]    basePri  Base Priority value to set*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
{__ASM volatile ("MSR basepri, %0" : : "r" (value) );
}/** \brief  Get Fault MaskThis function returns the current value of the Fault Mask register.\return               Fault Mask register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
{uint32_t result;__ASM volatile ("MRS %0, faultmask" : "=r" (result) );return(result);
}/** \brief  Set Fault MaskThis function assigns the given value to the Fault Mask register.\param [in]    faultMask  Fault Mask value to set*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
}#endif /* (__CORTEX_M >= 0x03) */#if       (__CORTEX_M == 0x04)/** \brief  Get FPSCRThis function returns the current value of the Floating Point Status/Control register.\return               Floating Point Status/Control register value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)uint32_t result;__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );return(result);
#elsereturn(0);
#endif
}/** \brief  Set FPSCRThis function assigns the given value to the Floating Point Status/Control register.\param [in]    fpscr  Floating Point Status/Control value to set*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) );
#endif
}#endif /* (__CORTEX_M == 0x04) */#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions *//** The CMSIS functions have been implemented as intrinsics in the compiler.* Please use "carm -?i" to get an up to date list of all instrinsics,* Including the CMSIS ones.*/#endif/*@} end of CMSIS_Core_RegAccFunctions */#endif /* __CORE_CMFUNC_H */
/**************************************************************************//*** @file     core_cmInstr.h* @brief    CMSIS Cortex-M Core Instruction Access Header File* @version  V3.02* @date     08. May 2012** @note* Copyright (C) 2009-2012 ARM Limited. All rights reserved.** @par* ARM Limited (ARM) is supplying this software for use with Cortex-M* processor based microcontrollers.  This file can be freely distributed* within development tools that are supporting such ARM based processors.** @par* THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.*******************************************************************************/#ifndef __CORE_CMINSTR_H
#define __CORE_CMINSTR_H/* ##########################  Core Instruction Access  ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction InterfaceAccess to dedicated instructions@{
*/#if   defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */#if (__ARMCC_VERSION < 400677)#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif/** \brief  No OperationNo Operation does nothing. This instruction can be used for code alignment purposes.*/
#define __NOP                             __nop/** \brief  Wait For InterruptWait For Interrupt is a hint instruction that suspends executionuntil one of a number of events occurs.*/
#define __WFI                             __wfi/** \brief  Wait For EventWait For Event is a hint instruction that permits the processor to entera low-power state until one of a number of events occurs.*/
#define __WFE                             __wfe/** \brief  Send EventSend Event is a hint instruction. It causes an event to be signaled to the CPU.*/
#define __SEV                             __sev/** \brief  Instruction Synchronization BarrierInstruction Synchronization Barrier flushes the pipeline in the processor,so that all instructions following the ISB are fetched from cache ormemory, after the instruction has been completed.*/
#define __ISB()                           __isb(0xF)/** \brief  Data Synchronization BarrierThis function acts as a special kind of Data Memory Barrier.It completes when all explicit memory accesses before this instruction complete.*/
#define __DSB()                           __dsb(0xF)/** \brief  Data Memory BarrierThis function ensures the apparent order of the explicit memory operations beforeand after the instruction, without ensuring their completion.*/
#define __DMB()                           __dmb(0xF)/** \brief  Reverse byte order (32 bit)This function reverses the byte order in integer value.\param [in]    value  Value to reverse\return               Reversed value*/
#define __REV                             __rev/** \brief  Reverse byte order (16 bit)This function reverses the byte order in two unsigned short values.\param [in]    value  Value to reverse\return               Reversed value*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{rev16 r0, r0bx lr
}
#endif/** \brief  Reverse byte order in signed short valueThis function reverses the byte order in a signed short value with sign extension to integer.\param [in]    value  Value to reverse\return               Reversed value*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
{revsh r0, r0bx lr
}
#endif/** \brief  Rotate Right in unsigned value (32 bit)This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.\param [in]    value  Value to rotate\param [in]    value  Number of Bits to rotate\return               Rotated value*/
#define __ROR                             __ror#if       (__CORTEX_M >= 0x03)/** \brief  Reverse bit order of valueThis function reverses the bit order of the given value.\param [in]    value  Value to reverse\return               Reversed value*/
#define __RBIT                            __rbit/** \brief  LDR Exclusive (8 bit)This function performs a exclusive LDR command for 8 bit value.\param [in]    ptr  Pointer to data\return             value of type uint8_t at (*ptr)*/
#define __LDREXB(ptr)                     ((uint8_t ) __ldrex(ptr))/** \brief  LDR Exclusive (16 bit)This function performs a exclusive LDR command for 16 bit values.\param [in]    ptr  Pointer to data\return        value of type uint16_t at (*ptr)*/
#define __LDREXH(ptr)                     ((uint16_t) __ldrex(ptr))/** \brief  LDR Exclusive (32 bit)This function performs a exclusive LDR command for 32 bit values.\param [in]    ptr  Pointer to data\return        value of type uint32_t at (*ptr)*/
#define __LDREXW(ptr)                     ((uint32_t ) __ldrex(ptr))/** \brief  STR Exclusive (8 bit)This function performs a exclusive STR command for 8 bit values.\param [in]  value  Value to store\param [in]    ptr  Pointer to location\return          0  Function succeeded\return          1  Function failed*/
#define __STREXB(value, ptr)              __strex(value, ptr)/** \brief  STR Exclusive (16 bit)This function performs a exclusive STR command for 16 bit values.\param [in]  value  Value to store\param [in]    ptr  Pointer to location\return          0  Function succeeded\return          1  Function failed*/
#define __STREXH(value, ptr)              __strex(value, ptr)/** \brief  STR Exclusive (32 bit)This function performs a exclusive STR command for 32 bit values.\param [in]  value  Value to store\param [in]    ptr  Pointer to location\return          0  Function succeeded\return          1  Function failed*/
#define __STREXW(value, ptr)              __strex(value, ptr)/** \brief  Remove the exclusive lockThis function removes the exclusive lock which is created by LDREX.*/
#define __CLREX                           __clrex/** \brief  Signed SaturateThis function saturates a signed value.\param [in]  value  Value to be saturated\param [in]    sat  Bit position to saturate to (1..32)\return             Saturated value*/
#define __SSAT                            __ssat/** \brief  Unsigned SaturateThis function saturates an unsigned value.\param [in]  value  Value to be saturated\param [in]    sat  Bit position to saturate to (0..31)\return             Saturated value*/
#define __USAT                            __usat/** \brief  Count leading zerosThis function counts the number of leading zeros of a data value.\param [in]  value  Value to count the leading zeros\return             number of leading zeros in value*/
#define __CLZ                             __clz#endif /* (__CORTEX_M >= 0x03) */#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */#include <cmsis_iar.h>#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */#include <cmsis_ccs.h>#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions *//** \brief  No OperationNo Operation does nothing. This instruction can be used for code alignment purposes.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
{__ASM volatile ("nop");
}/** \brief  Wait For InterruptWait For Interrupt is a hint instruction that suspends executionuntil one of a number of events occurs.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
{__ASM volatile ("wfi");
}/** \brief  Wait For EventWait For Event is a hint instruction that permits the processor to entera low-power state until one of a number of events occurs.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
{__ASM volatile ("wfe");
}/** \brief  Send EventSend Event is a hint instruction. It causes an event to be signaled to the CPU.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
{__ASM volatile ("sev");
}/** \brief  Instruction Synchronization BarrierInstruction Synchronization Barrier flushes the pipeline in the processor,so that all instructions following the ISB are fetched from cache ormemory, after the instruction has been completed.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
{__ASM volatile ("isb");
}/** \brief  Data Synchronization BarrierThis function acts as a special kind of Data Memory Barrier.It completes when all explicit memory accesses before this instruction complete.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
{__ASM volatile ("dsb");
}/** \brief  Data Memory BarrierThis function ensures the apparent order of the explicit memory operations beforeand after the instruction, without ensuring their completion.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
{__ASM volatile ("dmb");
}/** \brief  Reverse byte order (32 bit)This function reverses the byte order in integer value.\param [in]    value  Value to reverse\return               Reversed value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
{uint32_t result;__ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );return(result);
}/** \brief  Reverse byte order (16 bit)This function reverses the byte order in two unsigned short values.\param [in]    value  Value to reverse\return               Reversed value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
{uint32_t result;__ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );return(result);
}/** \brief  Reverse byte order in signed short valueThis function reverses the byte order in a signed short value with sign extension to integer.\param [in]    value  Value to reverse\return               Reversed value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
{uint32_t result;__ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );return(result);
}/** \brief  Rotate Right in unsigned value (32 bit)This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.\param [in]    value  Value to rotate\param [in]    value  Number of Bits to rotate\return               Rotated value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{__ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) );return(op1);
}#if       (__CORTEX_M >= 0x03)/** \brief  Reverse bit order of valueThis function reverses the bit order of the given value.\param [in]    value  Value to reverse\return               Reversed value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{uint32_t result;__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );return(result);
}/** \brief  LDR Exclusive (8 bit)This function performs a exclusive LDR command for 8 bit value.\param [in]    ptr  Pointer to data\return             value of type uint8_t at (*ptr)*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{uint8_t result;__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );return(result);
}/** \brief  LDR Exclusive (16 bit)This function performs a exclusive LDR command for 16 bit values.\param [in]    ptr  Pointer to data\return        value of type uint16_t at (*ptr)*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{uint16_t result;__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );return(result);
}/** \brief  LDR Exclusive (32 bit)This function performs a exclusive LDR command for 32 bit values.\param [in]    ptr  Pointer to data\return        value of type uint32_t at (*ptr)*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{uint32_t result;__ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );return(result);
}/** \brief  STR Exclusive (8 bit)This function performs a exclusive STR command for 8 bit values.\param [in]  value  Value to store\param [in]    ptr  Pointer to location\return          0  Function succeeded\return          1  Function failed*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{uint32_t result;__ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );return(result);
}/** \brief  STR Exclusive (16 bit)This function performs a exclusive STR command for 16 bit values.\param [in]  value  Value to store\param [in]    ptr  Pointer to location\return          0  Function succeeded\return          1  Function failed*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{uint32_t result;__ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );return(result);
}/** \brief  STR Exclusive (32 bit)This function performs a exclusive STR command for 32 bit values.\param [in]  value  Value to store\param [in]    ptr  Pointer to location\return          0  Function succeeded\return          1  Function failed*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{uint32_t result;__ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );return(result);
}/** \brief  Remove the exclusive lockThis function removes the exclusive lock which is created by LDREX.*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
{__ASM volatile ("clrex");
}/** \brief  Signed SaturateThis function saturates a signed value.\param [in]  value  Value to be saturated\param [in]    sat  Bit position to saturate to (1..32)\return             Saturated value*/
#define __SSAT(ARG1,ARG2) \
({                          \uint32_t __RES, __ARG1 = (ARG1); \__ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \__RES; \})/** \brief  Unsigned SaturateThis function saturates an unsigned value.\param [in]  value  Value to be saturated\param [in]    sat  Bit position to saturate to (0..31)\return             Saturated value*/
#define __USAT(ARG1,ARG2) \
({                          \uint32_t __RES, __ARG1 = (ARG1); \__ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \__RES; \})/** \brief  Count leading zerosThis function counts the number of leading zeros of a data value.\param [in]  value  Value to count the leading zeros\return             number of leading zeros in value*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
{uint8_t result;__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );return(result);
}#endif /* (__CORTEX_M >= 0x03) */#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions *//** The CMSIS functions have been implemented as intrinsics in the compiler.* Please use "carm -?i" to get an up to date list of all intrinsics,* Including the CMSIS ones.*/#endif/*@}*/ /* end of group CMSIS_Core_InstructionInterface */#endif /* __CORE_CMINSTR_H */

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot之把外部依赖包纳入Spring容器管理的两种方式

前言 在Spring boot项目中&#xff0c;凡是标记有Component、Controller、Service、Configuration、Bean等注解的类&#xff0c;Spring boot都会在容器启动的时候&#xff0c;自动创建bean并纳入到Spring容器中进行管理&#xff0c;这样就可以使用Autowired等注解&#xff0c;…

MQ面试题3

1、讲一讲Kafka与RocketMQ中存储设计的异同&#xff1f; Kafka 中文件的布局是以 Topic/partition &#xff0c;每一个分区一个物理文件夹&#xff0c;在分区文件级别实现文件顺序写&#xff0c;如果一个Kafka集群中拥有成百上千个主题&#xff0c;每一个主题拥有上百个分区&am…

《Vue3+Typescript》一个简单的日历组件实现

这是一个没有套路的前端博主&#xff0c;热衷各种前端向的骚操作&#xff0c;经常想到哪就写到哪&#xff0c;如果有感兴趣的技术和前端效果可以留言&#xff5e;博主看到后会去代替大家踩坑的&#xff5e; 主页: oliver尹的主页 格言: 跌倒了爬起来就好&#xff5e; 目录 一、…

架构的分类

目录 一、 RUP41 架构 1.1 RUP41架构方法概述 1.2 RUP41架构总体 1.3 RUP41架构方法内容 1.3.1 逻辑视图 1.3.2 开发视图 1.3.3 物理视图 1.3.4 处理视图 1.3.5 场景视图 ​二、 TOGAF9 架构 2.1 TOGAF9 架构概述 2.2 TOGAF9 架构分类 2.2.1 业务架构 2.2.2 数据架…

【1.3】Java微服务:Spring Cloud版本说明

✅作者简介&#xff1a;大家好&#xff0c;我是 Meteors., 向往着更加简洁高效的代码写法与编程方式&#xff0c;持续分享Java技术内容。 &#x1f34e;个人主页&#xff1a;Meteors.的博客 &#x1f49e;当前专栏&#xff1a; 微服务 ✨特色专栏&#xff1a; 知识分享 &#x…

django4.2 day1Django快速入门

1、创建虚拟环境 打开cmd安装virtualenv pip install virtualenvwrapper-winworkon 查看虚拟环境mkvirtualenv 创建新的虚拟环境删除虚拟环境 rmvirtualenv 进入虚拟环境 workon env 2、创建django虚拟环境并安装django 创建虚拟环境mkvirtualenv django4env进入虚拟环境安…

Spring Boot Starter 剖析与实践 | 京东云技术团队

引言 对于 Java 开发人员来说&#xff0c;Spring 框架几乎是必不可少的。它是一个广泛用于开发企业应用程序的开源轻量级框架。近几年&#xff0c;Spring Boot 在传统 Spring 框架的基础上应运而生&#xff0c;不仅提供了 Spring 的全部功能&#xff0c;还使开发人员更加便捷地…

Redis 简介

文章目录 Redis 简介 Redis 简介 Redis&#xff08;Remote Dictionary Server&#xff09;&#xff0c;远程词典服务器&#xff0c;基于 C/S 架构&#xff0c;是一个基于内存的键值型 NoSQL 数据库&#xff0c;开源&#xff0c;遵守 BSD 协议&#xff0c;Redis 由 C语言 实现。…

P4145 上帝造题的七分钟 2 / 花神游历各国

上帝造题的七分钟 2 / 花神游历各国 题目背景 XLk 觉得《上帝造题的七分钟》不太过瘾&#xff0c;于是有了第二部。 题目描述 "第一分钟&#xff0c;X 说&#xff0c;要有数列&#xff0c;于是便给定了一个正整数数列。 第二分钟&#xff0c;L 说&#xff0c;要能修改…

《向量数据库指南》——腾讯云向量数据库Tencent Cloud VectorDB产品特性,架构和应用场景

腾讯云向量数据库(Tencent Cloud VectorDB)是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持 10 亿级向量规模,可支持百万级 QPS 及毫秒级查询延迟。腾讯云向量数据库不仅能为大模型提…

JAVA开发工具-maven的安装与配置(最新最详细教程)

引言 Maven项目对象模型(POM)&#xff0c;可以通过一小段描述信息来管理项目的构建&#xff0c;报告和文档的项目管理工具 软件。 Maven 除了以程序构建能力为特色之外&#xff0c;还提供高级项目管理工具。由于 Maven 的缺省构建规则有较 高的可重用性&#xff0c;所以常常用两…

模电专题-MOS管的放大电路分析

在实际应用中&#xff0c;我们经常会使用到功率MOS&#xff0c;这时通常不会将它当成一个开关使用&#xff0c;而是当成一个放大器来使用&#xff0c;那这就需要让其工作在放大状态。 参考下图中的mos管的特性曲线&#xff0c;右图中的输出特性曲线中有一根红色的分界线&#x…

竞速榜实时离线对数方案演进介绍 | 京东云技术团队

一、背景 竞速榜是大促期间各采销群提供的基于京东实时销售数据的排行榜&#xff0c;同样应对大促流量洪峰场景&#xff0c;通过榜单撬动品牌在京东增加资源投入。竞速榜基于用户配置规则进行实时数据计算&#xff0c;榜单排名在大促期间实时变化&#xff0c;相关排名数据在微…

【雕爷学编程】Arduino动手做(181)---Maixduino AI开发板2

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

roop 视频换脸

roop: one click face swap. 只用一张人脸图片&#xff0c;就能完成视频换脸。 项目地址&#xff1a; https://github.com/s0md3v/roopColab 部署&#xff1a; https://github.com/dream80/roop_colab 本文是本地部署的实践记录。 环境基础 OS: Ubuntu 22.04.2 LTSKernel: 5…

操作系统专栏2-文件系统from小林coding

文件系统 文件系统构成虚拟文件系统文件的使用文件的存储连续存储非连续空间存放方式链表方式索引方式 Linux文件的实现方式 空闲分区的管理文件系统结构目录的存储软链接和硬链接 文件系统构成 Linux的设计哲学有一点很重要:一切皆文件,不仅仅是普通的文件和目录,就连块设备,…

程序员面试金典17.*

文章目录 17.01 不用加号的加法17.04 消失的数字17.05字母与数字17.06 2出现的次数17.07 婴儿名字17.08 马戏团人塔17.09 第k个数17.10 主要元素17.11 单词距离17.12 BiNode17.13 恢复空格&#xff08;未做&#xff0c;字典树dp&#xff09;17.14 最小K个数17.15 最长单词17.16…

webpack基础知识一:说说你对webpack的理解?解决了什么问题?

一、背景 Webpack 最初的目标是实现前端项目的模块化&#xff0c;旨在更高效地管理和维护项目中的每一个资源 模块化 最早的时候&#xff0c;我们会通过文件划分的形式实现模块化&#xff0c;也就是将每个功能及其相关状态数据各自单独放到不同的JS 文件中 约定每个文件是一…

数字孪生的「三张皮」问题:数据隐私、安全与伦理挑战

引言 随着数字化时代的来临&#xff0c;数据成为了当今社会的宝贵资源。然而&#xff0c;数据的广泛使用也带来了一系列隐私、安全与伦理挑战。数字孪生作为一种虚拟的数字化实体&#xff0c;通过收集和分析大量数据&#xff0c;模拟和预测现实世界中的各种情境&#xff0c;为…