机器学习---EM算法

1. 极大似然估计与EM算法

        极大似然估计是一种常用的参数估计方法,它是以观测值出现的概率最大作为准则。关于极

大似然估计,假设现在已经取到样本值了,这表明取到这一样本的概率L(θ) 比较

大。我们自然不会考虑那些不能使样本出现的θ作为估计值,再者,如果已知当

θ=θ(0)是使L(θ)取很大值,而θ中的其他θ的值使 L(θ)取值很小,自然认为取θ(0)作为未知参数

θ 的估计值较为合理。        

         在极大似然估计中,独立同分布(IID)的数据,  其概率密度函数为

似然函数定义为对数似然函数定义为θ的

极大似然估计为

        极大似然估计存在着问题是:①对于许多具体问题不能构造似然函数解析表达式 ②似然函数

的表达式过于复杂而导致求解方程组非常困难。正是在这种情况下,才提出了EM算法。EM算法主

要用于非完全数据参数估计,它是通过假设隐变量的存在,极大化地简化了似然函数方程,从而解

决了方程求解问题

       计算极大似然估计(maximum likelihood  estimate,MLE),需要求似然函数的极值。如求正态

分布均值和方差的MLE:

观测数据:观测到的随机变量Y的IID样本

缺失数据:未观测到的随机变量Z的值

完整数据:包含观测到的随机变量Y和未观测到的随机变量Z的数据,

        EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量的概率模型参

数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望

(Expectation);M步,求极大(Maximization)。所以这一算法称为期望极大算法。

2. 3硬币模型

       假设有3枚硬币,分别记作A、B、C。这些硬币正面出现的概率概率分别是a、b、c。进行如

下掷硬币试验:先掷A,根据其结果选出硬币B或C,正面选择硬币B,反面选硬币C;然后掷选出

的硬币,掷硬币的结果,出现正面记作1,出现反面记作0;独立地重复n次试验(这里n=10),观测结

果如下:1、1、0、1、0、0、1、0、1、1

假设只能观测到掷硬币的结果,不能观测到掷硬币的过程。问如何估计三硬币正面出现的概率,即

三硬币模型的参数。三硬币模型可以写作:

这里,随机变量y是观测变量,表示一次试验观测的结果是1或0;随机变量z是隐变量,表示未观测

到的掷硬币A的结果,θ=(a,b,c)是模型参数。注意,随机变量y的数据可以观测,随机变量z的数据

不可观测。

将观测数据表示为,未观测数据表示

则观测数据的似然函数为:

即:

考虑求模型参数θ=(a,b,c)的极大似然估计,即:

这个问题没有解析解,只能通过迭代的方法求解。EM算法就是可以用于求解这个问题的一种迭代

算法,下面给出针对以上问题的EM算法:

EM算法首先选取参数的初值,记作:

然后通过下面的步骤迭代计算参数的估计值,直至收敛为止。第i次迭代参数的估计值为:

EM算法的第i+1次迭代如下:

①E步:计算在模型参数下观测数据来自掷硬币B的概率:

计算似然函数的期望:

M步:求似然函数的极大值

计算模型参数的新估计值:

 

进行数字计算:假设模型参数的初始值取为:由E步第一个公式,

对y=0与y=1均有利用迭代公式(新估计值),得到

由E步第一个公式有,j=1,2,3...10,继续迭代得

于是参数模型的极大似然估计:

3. EM算法步骤

        EM算法的实现思路:首先根据已经给出的观测数据,估计出模型参数的值; 然后再依据上⼀

步估计出的参数值估计缺失数据的值,再根据估计出的缺失数据加上之前已经观测到的数据重新再

对参数值进行估计;然后反复迭代,直至最后收敛,迭代结束。

EM算法计算流程:

EM算法步骤:

选择模型参数的初值,开始迭代; 

E步:记为第i次迭代参数θ的估计值,在第i+1次迭代的E步,定义Q函数并计算:

这里,Q函数定义为完全数据的对数似然函数在给定观测数据Y和当前的参

下对未观测数据Z的条件概率分布的期望;通过求期望,去掉了完整似然函数中的

变量Z。其实就是用这个缺失数据的期望值来代替缺失的数据,而这个缺失的数据期望值和它的概

率分布有关。那么我们可以通过对似然函数关于缺失数据期望的最大化,来逼近原函数的极大值。

EM算法本质就是含有隐变量的概率模型参数的极大似然估计法。即EM的E步。

M步:求使极大化的θ,确定第i+1次迭代的参数的估计值

重复E、M两步,直到收敛。每次参数更新会增加非完整似然值,反复迭代后,会收敛到似然的局

部最大值。

4. EM算法原理

EM算法是一种解决存在隐含变量优化问题的有效方法。它的具体思想是:既然不能直接最大化参

数似然函数L,我们可以不断地建立参数似然函数L的下界(E步),然后优化下界(M步)。

利用琴生不等式得到似然函数的下界:

对于每一个样例i,让Qi表示该样例隐含变量z的某种分布,Qi满足条件:

这个过程可以看作是对L(θ)求了下界。对于的选择有很多种,哪种更好呢?假设θ已经给

定,那么L(θ)的值就决定于。我们可以通过调整这两个概率使下界不断上

升,以逼近L(θ)的真实值,那么什么时候算是调整好了呢?当不等式变成等式时,说明调整后的

概率能够等价L(θ)。根据琴生不等式,等式成立的条件是随机变量取值为常数值,故可得到:

c为常数,不依赖于

由于,那么就有(多个等式分子分母相加不变,这个认为每

个样例的两个概率比值都是c),那么有:

带入前面得到的似然函数下界,可以发现L(θ)的下界函数就是前面定义的

函数。 这一步是E步,建立了L(θ)的下界。

接下来是M步,就是在给定后,调整θ,去极大化L(θ)的下界,那么怎么确保EM收敛

呢?又如何确保每次迭代都能使极大似然估计单调增加呢?下述两个定理表明了利用EM算法所得

到的估计序列具有良好的收敛性,且其收敛到p(θ丨Y)的最大值。

定理1:设P(Y丨θ)为观测数据的似然函数,(i=1,2...)为EM算法得到的参数估计序列,

(i=1,2...)为对应的似然函数序列,则是单调递增的,即

保证了EM算法的每次迭代都使似然函数增大或达到局部极值。

定理2:设为观测数据的对数似然函数(i=1,2...)为EM算法得到的参数估计序列,(i=1,2...)为对应的对数似然序列。

(1)如果P(Y丨θ)有上界,则收敛到某一值

(2)在函数满足一定条件下,由EM算法得到的参数估计序列的收

敛值的稳定点。

保证了EM算法所得到的估计序列具有良好的收敛性,且其收敛到p(θ丨Y)的最大值。

5. EM算法补充

EM算法的另一种理解:坐标上升法

下图的直线式迭代优化的路径,可以看到每一步都会向最优值前进一步,而且前进路线是平行于坐

标轴的,因为每一步只优化一个变量。就像在x-y坐标系中找一个曲线的极值,然而曲线函数不能

直接求导,因此什么梯度下降方法就不适用了。但固定一个变量后,另外一个可以通过求导得到,

因此可以使用坐标上升法,一次固定一个变量,对另外的求极值,最后逐步逼近极值。对应到EM

上,E步:固定θ,优化Q;M步:固定Q,优化θ;交替将极值推向最大。

EM算法的几点说明: 

①参数的初值可以任意选择,但需要注意EM算法对初值是敏感的

②E步求Q函数。Q函数式中Z是未观测数据,Y是观测数据。注意,的第一个变元表

示要极大化的参数,第二个变元表示参数的当前估计值。每次迭代实际在求Q函数及其极大。

③M步求的极大化,得到,完成一次迭代。每次迭代都使似

然函数增大或达到局部极值。

④给出停止迭代的条件,一般是对较小的正数,若满足以下条件,则停止迭代。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/188615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机基础知识62

模型层回顾:基本使用 # 模型层有orm框架:对象关系映射 数据库中:一个个表 :user表,book表,一条条的记录 程序中:一个个类,一个个对象 数据库中一张表---->程序中一个…

【超详细】vue项目:Tinymce富文本使用教程以及踩坑总结+功能扩展

【【超详细】vue项目:Tinymce富文本使用教程以及踩坑总结功能扩展 引言:一、 开始二、快速开始1、安装Tinymce 三、封装成Vue组件1、文件结构2、index.vue3、dynamicLoadScript.js4、plugin.js5、toolbar.js 四、使用Tinymce组件五、业务逻辑实现1、添加…

对外汉语教师简历(精选12篇)

以对外汉语老师招聘需求为背景,我们制作了1份全面、专业且具有参考价值的简历案例,大家可以灵活借鉴,希望能帮助大家在众多候选人中脱颖而出。 对外汉语教师简历下载(在线制作):百度幻主简历或huanzhucv.c…

Promise的resolve和reject方法(手写题)

1.resolve 2.reject 3.手写 1.resolve //构造函数上添加 resolve 方法 Promise.resolve function (value) {return new Promise((resolve, reject) > {if (value instanceof Promise) {value.then((val) > {resolve(val)},(err) > {reject(err)})} else {resolve(v…

【Python表白系列】这个情人节送她一个漂浮的爱心吧(完整代码)

文章目录 漂浮的爱心环境需求完整代码详细分析系列文章 漂浮的爱心 环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这…

21.Python 操作文件

目录 1. 认识文件和I/O2. 打开文件在异常处理语句中打开在上下文管理中打开 3.读取文件3. 写入文件4. 删除文件5. 复制文件6. 重命名文件7. 文件查找和替换 1. 认识文件和I/O 文件是存储在设备上的一组字符或字节序列,可以包含任何内容,它是数据的集合和…

SQL中left join、right join、inner join等的区别

一张图可以简洁明了的理解出left join、right join、join、inner join的区别: 1、left join 就是“左连接”,表1左连接表2,以左为主,表示以表1为主,关联上表2的数据,查出来的结果显示左边的所有数据&#…

【自动化测试】Selenium IDE脚本编辑与操作(了解)

之前,我们录制脚本时是录制鼠标和键盘的所有在浏览器的操作,那么脚本会出现多余的步骤,有时候我们需要手动填写脚本或修改脚本,所以我们有必要对selenium IDE脚本编辑与操作有所了解;(采用录制的方式很容易…

Java+SSM+MySQL基于微信小程序的商城购物小程序(附源码 调试 文档)

基于微信小程序的商城购物小程序 一、引言二、国内外研究现状三、系统设计四、系统实现五、测试与评估六、结论七、界面展示八、源码获取 摘要: 本文介绍了一种基于微信小程序的商城购物小程序,该系统分为管理员和用户两种用户角色。管理员可以通过系统进…

流量内存cpu使用率使用工具

类似360工具球的工具 我提供了夸克下载喜欢的朋友可以直接下载使用 我用夸克网盘分享了「TrafficMonitor」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。 链接:https://pan…

(详细教程)笔记本电脑安装Ubuntu系统

1.前言 老的小米笔记本淘汰了,装一下linux系统玩一下。 使用工具如下:一台小米笔记本pro15.6一个惠普32G U盘一个台式机用于下载镜像等资源 2.下载Ubuntu桌面版 cn.ubuntu.com/download/de… 这里我下载的是 22.04.3 LTS 3.下载烧录工具&#xff0c…

前端面试高频考点—TCP vs UDP

目录 简介: 区别: 应用选择: tcp为什么需要三次握手? 简介: TCP(传输控制协议)和UDP(用户数据报协议) TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议,是专门为了在不…

MySQL之性能分析和系统调优

MySQL之性能分析和系统调优 性能分析 查看执行计划 EXPLAIN EXPLAIN作为MySQL的性能分析神器,可以用来分析SQL执行计划,需要理解分析结果可以帮助我们优化SQL explain select … from … [where ...]TABLE 表名 查询的每一行记录都对于着一张表 id 该…

干了3年功能测试,技术回到原点

简单概括一下 先说一下自己的情况,普通本科,18年通过校招进入深圳某软件公司,干了3年多的功能测试,21年的那会,因为大环境不好,我整个人心惊胆战的,怕自己卷铺盖走人了,我感觉自己不…

推荐一款优秀的json在线格式化校验工具

www.bjson.chat 这个工具是目前见过最好用的JSON工具, 页面简单,支持text,tree两种显示格式,关键词高亮显示支持亮白和暗黑两种风格最主要的是如果要格式化很长的json的话,这个工具还可以全屏显示,简直不…

非标设计之螺纹选型

目录 一、螺纹种类二、 螺纹加工:第一大类:螺纹切削第二大类:螺纹滚压三、螺丝钻孔和选型: 一、螺纹种类 一、螺纹种类 按牙型可分为三角形、梯形、矩形、锯齿形和圆弧螺纹; 按螺纹旋向可分为左旋和右旋;…

电脑如何录音?适合初学者的详细教程

“电脑怎么录音呀?参加了一个学校举办的短视频大赛,视频拍摄都很顺利,音乐却出了问题,朋友说可以用电脑录制一段音乐应付一下,可是我不会操作,有哪位大佬教教我!” 声音是一种强大的媒介&#…

七天.NET 8操作SQLite入门到实战 - 第五天引入SQLite-net ORM并封装常用方法(SQLiteHelper)

前言 上一章节我们搭建好了EasySQLite的前后端框架,今天我们的主要任务是在后端框架中引入SQLite-net ORM并封装常用方法(SQLiteHelper)。 七天.NET 8操作SQLite入门到实战详细教程 第一天 SQLite 简介第二天 在 Windows 上配置 SQLite环境…

C语言每日一题(43)旋转链表

力扣 61 旋转链表 题目描述 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 1: 输入:head [1,2,3,4,5], k 2 输出:[4,5,1,2,3]示例 2: 输入:head [0,1,2], …

⭐ Unity 开发bug —— 打包后shader失效或者bug (我这里用Shader做两张图片的合并发现了问题)

1.这里我代码没啥问题~~~编辑器里也没毛病 void Start(){// 加载底图和上层图片string backgroundImagePath Application.streamingAssetsPath "/background.jpg";Texture2D backgroundTexture new Texture2D(2, 2);byte[] backgroundImageData System.IO.File.R…