AI模特换装的前端实现

本文作者为 360 奇舞团前端开发工程师

随着AI的火热发展,涌现了一些AI模特换装的前端工具(比如weshop网站),他们是怎么实现的呢?使用了什么技术呢?下文我们就来探索一下其实现原理。

总体的实现流程如下:我们将下图中的这个模特的图片,使用Segment Anything Model在后端分割图层,然后将分割后的图层mask信息返回给前端处理。在前端中选择需要保留的图层信息(如下图中的模特的衣服图层),然后将选中的图层信息交给后端中的Stable Diffusion处理。后端使用原始图片结合选中的图层蒙版图片结合图生图的功能,可以实现weshop等网站的模特换衣等功能。

dbaf4d8dd8694d2e1908ee85b4e3f674.jpeg

本文先简单介绍一下使用SAM智能图层分割,然后主要介绍一下在前端中怎么对分割后的图层进行选择的处理流程。

使用SAM识别图层

首先我们需要对图层进行分割,在SAM出来之前,我们需要使用PS将模特的衣服选取出来,然后倒出衣服的模板,然后再使用其他工具进行替换。但是现在有了SAM后,我们可以对图片中的事物进去只能区分,获取各种物品的图层。

Segment Anything Model(SAM)是一种尖端的图像分割模型,可以进行快速分割,为图像分析任务提供无与伦比的多功能性。SAM 的先进设计使其能够在无需先验知识的情况下适应新的图像分布和任务,这一功能称为零样本传输。SAM 使任何人都可以在不依赖标记数据的情况下为其数据创建分段掩码。

要深入了解 Segment Anything 模型和 SA-1B 数据集,请访问Segment Anything 网站(https://segment-anything.com/)并查看研究论文Segment Anything(https://arxiv.org/abs/2304.02643)。

我们使用SAM进行图像分割,将一个图片中的物体分割成不同的部分。

def mask2rle(img):'''img: numpy array, 1 - mask, 0 - backgroundReturns run length as string formated'''pixels = img.T.flatten()pixels = np.concatenate([[0], pixels, [0]])runs = np.where(pixels[1:] != pixels[:-1])[0] + 1runs[1::2] -= runs[::2]return ' '.join(str(x) for x in runs)def trans_anns(anns):if len(anns) == 0:returnsorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=False)list = []index = 0# 对每个注释进行处理for ann in sorted_anns:bool_array = ann['segmentation']# 将boolean类型的数组转换为int类型int_array = bool_array.astype(int)# 转化为RLE格式rle = mask2rle(int_array)list.append({"index": index, "mask": rle})index += 1return listimage = cv2.imread('<your image path>')import sys
sys.path.append('<your segment-anything link path>')
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor# sam 模型路径
sam_checkpoint = '<your sam model path>'
# 根据下载的模型,设置对应的类型
model_type = "vit_h"# device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
# sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
# 处理sam返回的图层信息
mask_list = trans_anns(masks)mask_obj = {"height": image.shape[0],"width": image.shape[1],"mask_list": mask_list
}import json
print(json.dumps(mask_obj))

运行以上python代码之前,需要配置sam的python环境,具体的配置描述请查看sam的官方描述。

我们通过以上代码,将我们提供的图片,通过SAM处理后,返回图层分割数据。在trans_anns方法中,将图层按照area从小到大的顺序排序。遍历各个图层,将boolean类型的数组转换为 0 1 int类型,然后对二维numpy array类型的0 1二进制mask图像转换为RLE格式。

RLE是一种简单的无损数据压缩算法,通常用于表示连续的相同值的序列。RLE编码的字符串通常用于在图像分割等任务中存储和传输二进制掩码信息,以便更有效地表示图像中的目标区域。并且方便数据压缩和传输。我们参照的这种编解码方式。也可以使用coco RLE的编解码方式。

将编码后的各图层信息存储到list中,就可以通过接口传输给前端处理了。

前端选择图层

下面这些是本文的重点,在前端将刚才解析后的mask_list信息展示,并可以通过交互选取需要保留的模版,并生成最终合并选取的mask生成一个需要保留的服装模版。

body中的基本组件为

<div id="layer-box" style=" width: 500px; height: 500px;position: relative"><img style="width: 100%; height: 100%; position: absolute" src="https://p0.ssl.qhimg.com/t01989f0d446bed3e58.jpg" /></div><div id="save" @click="save" style="margin-top: 20px;margin-right: 20px; margin-left: 20px;">保存</div><canvas id="mergedCanvas" style="border:1px solid #000;"></canvas>

id为layer-box的div组件作为各个mask的父组件,用于查找和管理各个mask的隐藏和展示。其子组件中的第一个标签是展示原始的模特图片的。

id为save的组件在点击时可以处理保存选中的各个mask为一个新的mask图片,用于处理图片合成。

id为mergedCanvas的canvas是进行图片合成和展示合成后的图片的。

解析SAM处理后的mask_list信息
/*** rle格式图片信息转换为mask信息*/function rle2mask(mask_rle, shape = [500, 500]) {/*mask_rle: run-length as string formatted (start length)shape: [width, height] of array to returnReturns an array, 1 - mask, 0 - background*/const s = mask_rle.split(" ");let starts = s.filter((_, index) => index % 2 === 0).map(Number);const lengths = s.filter((_, index) => index % 2 !== 0).map(Number);starts = starts.map(start => start - 1);const ends = starts.map((start, index) => start + lengths[index]);const img = new Array(shape[0] * shape[1]).fill(0);for (let i = 0; i < starts.length; i++) {for (let j = starts[i]; j < ends[i]; j++) {img[j] = 1;}}// return transposeArray(img, shape);const transposed = new Array(shape[1]).fill(0).map(() => new Array(shape[0]).fill(0));for (let i = 0; i < shape[0]; i++) {for (let j = 0; j < shape[1]; j++) {transposed[j][i] = img[i * shape[1] + j];}}return transposed;}/*** 转换mask图片信息,并设置mask的填充颜色*/function transformMaskImage(item, _width, _height) {let canvas = document.createElement("canvas");let canvasContext = canvas.getContext("2d");canvas.width = _width;canvas.height = _height;let rgbaData = rle2mask(item.mask || '', [_width, _height])for (let y = 0; y < rgbaData.length; y++) {let row = rgbaData[y];for (let x = 0; x < row.length; x++) {let dot = rgbaData[y][x];if (1 === dot && canvasContext) {// 值为1的点填充颜色(canvasContext.fillStyle = "#4169eb"), canvasContext.fillRect(x, y, 1, 1);}}}// canvas当前层的图片(base64格式)// matrix:上边生成的二维数组return { imageData: canvas.toDataURL("image/png"), matrix: rgbaData };}// 使用sam处理后的图层信息(rle编码后的,由于篇幅限制,已省略)const res = { "height": 500, "width": 500, "mask_list": [{ "index": 0, "mask": "109864 3 110361 7 110860 9 111359 10 111859 10 112359 10 112860 9 113360 10 113860 10 114360 10 114860 10 115360 10 115861 8" }, { "index": 1, "mask": "121910 2 122409 4 122908 6 123408 7 123907 8 124407 9 124907 9 125406 11 125905 12 126404 13 126905 12 127405 12 127906 12 128406 12 128907 11 129407 10 129908 8 130408 4" },......] }layers = res.mask_list.map((item) =>transformMaskImage(item, res.width, res.height));

res是sam处理后返回的图层信息(由于篇幅限制,已省略,详情请看demo(https://github.com/yuhao1128/AI-model-mask-select-demo/blob/main/index.html)中的数据)。遍历mask_list,使用canvas保存各个mask的信息。由于前面sam处理后的mask_list是经过压缩编码的,所以在rle2mask方法中对rle编码后的数据解码为 0/1二维数组的格式。rle2mask中的解码方式请参考这种解码(https://www.kaggle.com/code/pestipeti/decoding-rle-masks)方式。

然后遍历二维数组,将值为1的点填充颜色,此处是填充的rgba为"#4169eb"的颜色,可以根据需要自己修改为其他的颜色。此处填充的颜色会在下文中鼠标移动到mask上面时,在mask展示的时候呈现此颜色。

最后在layers中存储各个mask的base64格式的图片信息和二维数组信息。

将各个mask添加到图层
const box = document.querySelector("#layer-box");const baseStyle = "width:100%;height:100%;position: absolute;";//将各个mask添加为layer-box的子组件,并隐藏mask的展示layers.forEach((ele) => {const image = document.createElement("img");image.src = ele.imageData;image.style = `${baseStyle}opacity:0`;image.className = "layer";box.append(image);});

将各个mask添加的图片添加为layer-box组件的子组件,并且设置opacity为0,先隐藏这些mask的展示,在下文会监听鼠标的位置,通过设置mask的opacity属性来展示mask。

监听鼠标的位置和点击
// 鼠标移入mask组件的区域时,展示maskbox.addEventListener("mousemove", (e) => {const { clientX, clientY } = e;const X = box.getBoundingClientRect().left + document.body.scrollLeft;const Y = box.getBoundingClientRect().top + document.body.scrollTop;const x = parseInt(res.width * (clientX - X) / box.getBoundingClientRect().width)const y = parseInt(res.height * (clientY - Y) / box.getBoundingClientRect().height)const allLayers = box.querySelectorAll(".layer");const index = layers.findIndex((item) => item.matrix?.[y]?.[x]);allLayers.forEach((ele, i) => {if (i === index) {ele.style = `${baseStyle}opacity:0.7`;} else {// 已经选中的不需要隐藏if (selectedIndexList.indexOf(i) === -1) {ele.style = `${baseStyle}opacity:0`;}}});});// 鼠标移出mask组件的区域时,隐藏maskbox.addEventListener("mouseout", (e) => {console.log('mouseout selectedIndexList', selectedIndexList);const allLayers = box.querySelectorAll(".layer");allLayers.forEach((ele, i) => {// 只有选中的才会展示if (selectedIndexList.indexOf(i) > -1) {ele.style = `${baseStyle}opacity:0.7`;} else {ele.style = `${baseStyle}opacity:0`;}});});// 用户点击时,保存用户选中的mask的indexbox.addEventListener("mousedown", (e) => {const { clientX, clientY } = e;const X = box.getBoundingClientRect().left + document.body.scrollLeft;const Y = box.getBoundingClientRect().top + document.body.scrollTop;const x = parseInt(res.width * (clientX - X) / box.getBoundingClientRect().width)const y = parseInt(res.height * (clientY - Y) / box.getBoundingClientRect().height)const index = layers.findIndex((item) => item.matrix?.[y]?.[x]);if (selectedIndexList.indexOf(index) === -1) {//保存点击选中的元素indexselectedIndexList.push(index)}});

box就是上文的layer-box,是各个mask的父组件。layer-box监听鼠标的move事件和click事件,当move到对应的mask上时,将mask展示,移除mask时,隐藏mask。mask在list中是从小到大的顺序,所以遍历匹配mask时,会优先匹配面积小的组件,方便灵活选择。当点击mask的位置时,保存mask在list中的index到selectedIndexList中,方便后续导出保存选择,并高亮展示选中的mask。

选中的mask合成图片
// 存储各个图层图片信息let layers = []// 选择layer的indexconst selectedIndexList = []// 点击保存document.getElementById('save').onclick = function () {const images = [];selectedIndexList.forEach(index => {images.push(layers[index].imageData)})drawing(images)}/*** 图片合成*/function drawing(images) {const canvas = document.getElementById("mergedCanvas");canvas.width = 500;  // 设置canvas宽canvas.height = 500; // 设置canvas高const ctx = canvas.getContext("2d");let loadedImages = 0;images.forEach(function (src) {const img = new Image();img.src = src;img.onload = function () {loadedImages++;// 绘制每张图片到 canvas 上ctx.drawImage(img, 0, 0);// 如果所有图片都加载完成,保存合并后的图片if (loadedImages === images.length) {// 获取图片的像素数据const imageData = ctx.getImageData(0, 0, img.width, img.height);const data = imageData.data;// 转换为黑白效果for (let i = 0; i < data.length; i += 4) {// 将 R、G、B 设置为0data[i] = 0;data[i + 1] = 0;data[i + 2] = 0;}// 将修改后的数据放回 canvasctx.putImageData(imageData, 0, 0);// 导出为 base64 图片const mergedImageBase64 = canvas.toDataURL("image/png");// 如果需要,你可以将mergedImageBase64图片用于其他操作,比如发送到服务器}};});}

当选择完成后,可以点击“保存”按钮,将选择的mask使用canvas生成一个合并后的图片。此处已将合成后的图片转换为黑白蒙版照片,之后可以使用这个合并后的图片进行后续的处理。

根据选中的图层,点击保存后,生成的模板如下图所示。

389768c6055569702819cda63bb1dc49.jpeg

预览效果(https://yuhao1128.github.io/AI-model-mask-select-demo/)、代码详情(https://github.com/yuhao1128/AI-model-mask-select-demo/blob/main/index.html)

使用Stable Diffusion进行后续的处理

由于篇幅的限制,并且这部分网络上以及有很多的介绍资料,就不再本文中进行介绍了,可以参考这篇文章(https://www.uisdc.com/stable-diffusion-24)的介绍尝试体验一下在本地中使用Stable Diffusion的图生图的「重绘蒙版」来进行模特的重新绘制。

也可以在后端部署Stable Diffusion服务中处理模特换装。将前面的模特原图以及生成的蒙版图片,以及其他的SD的图生图功能的参数传给后端的SD服务处理。

除了模特换装的功能,上面的流程还可以应用到物品换背景的功能中。其他的一些智能抠图,智能替换的功能都可以扩展上面的处理流程来实现。

参考链接:

https://github.com/facebookresearch/segment-anything

https://juejin.cn/post/7248903246970503223#heading-2

https://www.uisdc.com/stable-diffusion-24

- END -

关于奇舞团

奇舞团是 360 集团最大的大前端团队,代表集团参与 W3C 和 ECMA 会员(TC39)工作。奇舞团非常重视人才培养,有工程师、讲师、翻译官、业务接口人、团队 Leader 等多种发展方向供员工选择,并辅以提供相应的技术力、专业力、通用力、领导力等培训课程。奇舞团以开放和求贤的心态欢迎各种优秀人才关注和加入奇舞团。

fe6c7c7319f195cbcc2ca1909b9dfe06.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/185425.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

笔记二十六、React中路由懒加载的扩展使用

26.1 在路由中配置懒加载 lazy routes/index.jsx 代码 import {Navigate} from "react-router-dom"; import Home from "../components/Home"; import About from "../components/About"; // import Classify from "../components/Home/c…

自动化测试框架搭建步骤教程

说起自动化测试&#xff0c;我想大家都会有个疑问&#xff0c;要不要做自动化测试&#xff1f; 自动化测试给我们带来的收益是否会超出在建设时所投入的成本&#xff0c;这个嘛别说是我&#xff0c;即便是高手也很难回答&#xff0c;自动化测试的初衷是美好的&#xff0c;而测试…

CAD精品Eyeshot Fem 2023.3.630 -2023-11-05 Crack

2023.3.630 更新25天前 分享 跟随还没有人关注 改进的 Brep.TransformBy() 方法修复了工具栏内存泄漏修复了 glTF 材质导出期间的异常改进了 glTF 材质金属粗糙度设置修复了渐进式绘图和剪辑平面的错误在 Workspace.UseShaders 属性设置器中添加了缺少的 RenderContext.MakeCur…

Vue+ElementUI+C#技巧分享:周数选择器

文章目录 前言一、周数的计算逻辑1.1 周数的定义1.2 年初周数的确定1.3 周数的计算方法 二、VueElementUI代码实现2.1 计算周数2.2 获取周的日期范围2.3 根据周数获取日期范围2.4 控件引用2.4.1 控件引用代码分析2.4.2 初始化变量代码分析 2.5 周数选择器完整代码 三、C#后端代…

Vue大屏自适应终极解决方案

v-scale-screenv-scale-screen是一个大屏自适应组件&#xff0c;在实际业务中&#xff0c;我们常用图表来做数据统计&#xff0c;数据展示&#xff0c;数据可视化等比较直观的方式来达到一目了然的数据查看&#xff0c;但在大屏开发过程中&#xff0c;常会因为适配不同屏幕而感…

sklearn 笔记:聚类

1 sklearn各方法比较 方法名称参数使用场景K-means簇的数量 非常大的样本数 中等簇数 簇大小需要均匀 Affinity Propagation 阻尼系数 样本偏好 样本数不能多 簇大小不均 MeanShift带宽 样本数不能多 簇大小均匀 谱聚类簇的数量 中等样本数 小簇数 簇大小均匀 层次聚类簇的数量…

职业测评链接

职业测评链接&#xff1a; https://www.16personalities.com/ch?utm_sourceresults-turbulent-campaigner&amp%3Butm_mediumemail&amp%3Butm_campaignch&amp%3Butm_contentlogo-0

selenium脚本编写及八大元素定位方法

selenium脚本编写 上篇文章介绍了selenium环境搭建&#xff0c;搭建好之后就可以开始写代码了 基础脚本,打开一个网址 from selenium import webdriver driver webdriver.Chrome()#打开chrome浏览器 driver.get(https://www.baidu.com) #打开百度打开本地HTML文件 上篇文章…

brat文本标注工具——安装

目录 一、Linux系统安装 1. centOS系统 2. Ubuntu系统 3. macOS系统 4.说明 二、Google Chrome安装 1. 打开命令行&#xff0c;切换到管理者权限 2. 安装依赖 3. 下载Google浏览器的安装包 4. 安装Google Chrome 三、yum更新 四、Apache安装 安装Apache 启动Apac…

threeJs引入模型使用3D模型(vite+React+Ts)

要在 Three.js 中使用 3D 模型&#xff0c;你需要加载模型文件并将其添加到场景中。Three.js 支持多种不同的模型格式&#xff0c;比如 OBJ、FBX、GLTF 等。 init vitelatest //创建一个vite的脚手架 选择react并配置Ts 安装three.js准备 npm install react-three/drei np…

a-select:远程搜索——防抖节流处理——基础积累

a-select:远程搜索——防抖节流处理——基础积累 效果图下拉筛选数据&#xff1a;远程搜索功能&#xff1a; 效果图 下拉筛选数据&#xff1a; <a-selectshow-searchv-model"form.jobPositionCode"placeholder"请选择岗位"style"width: 100%"…

Redis哈希对象(listpack介绍)

哈希对象的编码可以是ziplist或者hashtable。再redis5.0版本之后出现listpack&#xff0c;为了是代替ziplist。 一. 使用ziplist编码 ziplist编码的哈希对象使用压缩列表作为底层实现&#xff0c;每当有新的键值对要加入到哈希对象时&#xff0c;程序都会先将保存了键值对的键…

【Linux 静态IP配置】

静态IP配置 1.NAT模式设置2.设置静态ip3.重启网络4.查看ip 1.NAT模式设置 首先设置虚拟机中NAT模式的选项&#xff0c;打开VMware&#xff0c;点击“编辑”下的“虚拟网络编辑器”&#xff0c;设置NAT参数 注意&#xff1a; VMware Network Adapter VMnet8保证是启用状态 …

ClassCMS2.4漏洞复现

ClassCMS2.4漏洞复现 环境搭建 任意文件下载漏洞复现 漏洞成因 ClassCMS2.4漏洞复现 CMS源码在附件中 环境搭建 使用phpstudy2016搭建web环境&#xff0c;php版本为5.5 安装CMS 这里选择Mysql数据库进行安装 用户名和密码都写默认的admin方便记忆 输入完成后点击安装 点…

【性能测试】性能测试监控关键指标

系统指标 检测性能测试是否有bug的关键指标 1、系统指标——与用户场景及需求直接相关。 并发用户数&#xff1a;某一物理时刻同时向系统提交请求的用户数。平均响应时间&#xff1a;系统处理事务的响应时间的平均值&#xff0c;对于系统快速响应类页面&#xff0c;一般响应…

货代FOB条款卖方必备的知识:发货人都要承担哪些费用呢?

据统计&#xff0c;中国出口中以FOB成交的占到70%&#xff0c;但专家指出&#xff1a;FOB对出口商的风险更大&#xff0c;有可能造成货、款两空的结局。 目前我国出口合同以FOB价格条款成交的比例越来越大&#xff0c;而且收货人指定船公司的少&#xff0c;指定境外货代的多&am…

建设银行新余市分行积极开展国债下乡宣传活动

近日&#xff0c;为了普及国债知识&#xff0c;提高农村居民对国债的认知度和投资意识&#xff0c;建设银行新余市分行组织员工前往下村开展了一场国债下乡宣传活动。 活动当天&#xff0c;工作人员早早地来到了下乡地点&#xff0c;悬挂起了国债宣传横幅&#xff0c;并摆放了…

ESP32-Web-Server编程- 使用SSE 实时更新设备信息

ESP32-Web-Server编程- 使用SSE 实时更新设备信息 概述 如前所述&#xff0c;传统 HTTP 通信协议基于 Request-Apply&#xff08;请求-响应&#xff09;机制&#xff0c;浏览器&#xff08;客户端&#xff09;只能单向地向服务器发起请求&#xff0c;服务器无法主动向浏览器推…

java源码-数组

背景 上传图片&#xff0c;需要对图片格式进行校验&#xff0c;这是就可以使用数组 1、什么是数组&#xff1f; Java 语言中提供的数组是用来存储固定大小的同类型元素。 如&#xff1a;可以声明一个数组变量&#xff0c;如 numbers[100] 来代替直接声明 100 个独立变量 numb…

替代升级虚拟化 | ZStack Cloud云平台助力中节能镇江公司核心业务上云

数字经济正加速推动各行各业的高质量升级发展&#xff0c;云计算是数字经济的核心底层基础设施。作为云基础软件企业&#xff0c;云轴科技ZStack 坚持自主创新&#xff0c;自研架构&#xff0c;产品矩阵可全面覆盖数据中心云基础设施&#xff0c;针对虚拟化资源实现纳管、替代和…