手势识别4:C/C++实现手部检测和手势识别(含源码下载)

手势识别4:C/C++实现手部检测和手势识别(含源码下载)

目录

手势识别4:C/C++实现手部检测和手势识别(含源码下载)

1. 前言

2. 手势识别模型(YOLOv5)

(1)手势识别模型训练

(2)将Pytorch模型转换ONNX模型

(3)将ONNX模型转换为TNN模型

3. 手势识别模型C++部署

(1)项目结构

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

4. 手势识别检测效果

5. 项目源码下载

6. 手势识别Android版本

7.项目推荐:手部关键点检测


1. 前言

这是手势识别项目系列之《C/C++实现手部检测和手势识别》;本篇主要分享将Python训练后的YOLOv5的手势识别模型转写成C/C++代码。我们将开发一个简易的、可实时运行的手势识别C/C++ Demo,支持one,two,ok等18种常见的通用手势动作识别,也可以根据业务需求自定义训练的手势识别的类别。C/C ++版本手势识别模型推理支持CPU和GPU加速,在GPU(OpenCL)加速下,可以达到实时的检测效果,基本满足业务的性能需求。

先展示一下手势识别检测的效果:

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/134690422


更多手势识别,手部关键点检测的系列文章请参考:

  • 手势识别1:HaGRID手势识别数据集使用说明和下载
  • 手势识别2:基于YOLOv5的手势识别系统(含手势识别数据集+训练代码)
  • 手势识别3:Android实现手部检测和手势识别(可实时运行,含Android源码)
  • 手势识别4:C/C++实现手部检测和手势识别(含源码下载)
  • 手部关键点检测1:手部关键点(手部姿势估计)数据集(含下载链接)
  • 手部关键点检测2:YOLOv5实现手部检测(含训练代码和数据集)
  • 手部关键点检测3:Pytorch实现手部关键点检测(手部姿势估计)含训练代码和数据集
  • 手部关键点检测4:Android实现手部关键点检测(手部姿势估计)含源码 可实时检测
  • 手部关键点检测5:C++实现手部关键点检测(手部姿势估计)含源码 可实时检测

 ​​


2. 手势识别模型(YOLOv5)

(1)手势识别模型训练

考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢,所以这里Android部署仅仅考虑yolov5s05模型,yolov5s05即是在yolov5s的基础上做了模型轻量化处理,其channels通道数全部都减少一半,并且模型输入由原来的640×640降低到320×320。从性能来看,yolov5s05比yolov5s快5多倍,而mAP下降了5%(0.87605→0.82706),对于手机端,这精度还是可以接受。

官方YOLOv5:  GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite 

下面是yolov5s05和yolov5s的参数量和计算量对比:

模型input-sizeparams(M)GFLOPs手势识别mAP(0.5:0.95)
yolov5s640×6407.216.50.87605
yolov5s05320×3201.71.10.82706

yolov5s05和yolov5s训练过程完全一直,仅仅是配置文件不一样而已;碍于篇幅,本篇博客不在赘述,详细训练过程请参考:《基于YOLOv5的手势识别系统(含手势识别数据集+训练代码)》

(2)将Pytorch模型转换ONNX模型

训练好yolov5s模型后,你需要先将Pytorch模型转换为ONNX模型,并使用onnx-simplifier简化网络结构,Python版本的已经提供了ONNX转换脚本,终端输入命令如下:

# 转换yolov5s05模型
python export.py --weights "data/model/yolov5s05_320/weights/best.pt" --img-size 320 320# 转换yolov5s模型
python export.py --weights "data/model/yolov5s_640/weights/best.pt" --img-size 640 640

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(3)将ONNX模型转换为TNN模型

目前在C++端上,CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

转换成功后,会生成两个文件(*.tnnproto和*.tnnmodel) ,下载下来后面会用到


3. 手势识别模型C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通电脑设备即可达到实时处理。

如果你想在这个 C++ Demo部署你自己训练的模型,你可以将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)# -DCMAKE_BUILD_TYPE=Debug# -DCMAKE_BUILD_TYPE=Releasemessage(STATUS "No build type selected, default to Release")set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread#set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DTNN_ARM_ENABLE)              # for Android CPUadd_definitions(-DDEBUG_ANDROID_ON)            # for Android Logadd_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")# Detector
include_directories(src)
set(SRC_LISTsrc/yolov5.cppsrc/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")#add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)

(5)main源码

主程序src/main_for_yolov5.cpp中提供行手势识别的Demo,支持图片,视频和摄像头测试

//
// Created by Pan on 2018/6/24.
//#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "yolov5.h"
#include "image_utils.h"using namespace dl;
using namespace vision;
using namespace std;const int num_thread = 1;
DeviceType device = GPU; // 使用GPU运行,需要配置好OpenCL
//DeviceType device = CPU; // 使用CPU运行// 测试YOLOv5s_640
string proto_file = "../data/tnn/yolov5/yolov5s_640.opt.tnnproto";
string model_file = "../data/tnn/yolov5/yolov5s_640.opt.tnnmodel";
YOLOv5Param model_param = YOLOv5s_640;//模型参数// 测试YOLOv5s05_320
//string proto_file = "../data/tnn/yolov5/yolov5s05_320_anchor.opt.tnnproto";
//string model_file = "../data/tnn/yolov5/yolov5s05_320_anchor.opt.tnnmodel";
//YOLOv5Param model_param = YOLOv5s05_320;//模型参数// 设置检测阈值
const float scoreThresh = 0.3;
const float iouThresh = 0.3;
YOLOv5 *detector = new YOLOv5(model_file,proto_file,model_param,num_thread,device);/**** 测试图片文件* @return*/
int test_image_file() {// 测试图片string image_dir = "../data/test_image";vector<string> image_list = get_files_list(image_dir);for (string image_path:image_list) {cv::Mat bgr_image = cv::imread(image_path);if (bgr_image.empty()) continue;FrameInfo resultInfo;// 开始检测detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);// 可视化代码detector->visualizeResult(bgr_image, &resultInfo);}printf("FINISHED.\n");return 0;
}/**** 测试视频文件* @return*/
int test_video_file() {string video_file = "../data/video/video-test.mp4"; //视频文件cv::VideoCapture cap;bool ret = get_video_capture(video_file, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;FrameInfo resultInfo;// 开始检测detector->detect(frame, &resultInfo, scoreThresh, iouThresh);// 可视化代码detector->visualizeResult(frame, &resultInfo, 30);}cap.release();delete detector;detector = nullptr;printf("FINISHED.\n");return 0;
}/**** 测试摄像头* @return*/
int test_camera() {int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)cv::VideoCapture cap;bool ret = get_video_capture(camera, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;FrameInfo resultInfo;// 开始检测detector->detect(frame, &resultInfo, scoreThresh, iouThresh);// 可视化代码detector->visualizeResult(frame, &resultInfo, 10);}cap.release();delete detector;detector = nullptr;printf("FINISHED.\n");return 0;}int main() {//test_image_file();test_video_file();//test_camera();return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];thenmkdir "build"
elseecho "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./Detector
  • 如果你要测试CPU运行的性能,请修改src/main_for_yolov5.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main_for_yolov5.cpp (需配置好OpenCL) 

DeviceType device = GPU; //默认使用GPU

纯C++推理模式需要耗时几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。


4. 手势识别检测效果

C++版本手势识别的检测效果与Python版本的检测效果几乎一致:


5. 项目源码下载

源码下载:C/C++实现手部检测和手势识别(含源码下载)

内容包含:

  1. 提供快速版yolov5s05手势识别,在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右

  2. 提供高精度版本yolov5s手势识别,CPU(4线程)约250ms左右,GPU约100ms左右

  3. ​C/C++项目源码支持图片,视频,摄像头测试

  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装


6. 手势识别Android版本

 【Android APP体验】https://download.csdn.net/download/guyuealian/86666991

 APP在普通Android手机上可以达到实时的手势识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

7.项目推荐:手部关键点检测

 更多项目《手部关键点检测(手部姿势估计)》系列文章请参考:

  • 手部关键点检测1:手部关键点(手部姿势估计)数据集(含下载链接)
  • 手部关键点检测2:YOLOv5实现手部检测(含训练代码和数据集)
  • 手部关键点检测3:Pytorch实现手部关键点检测(手部姿势估计)含训练代码和数据集
  • 手部关键点检测4:Android实现手部关键点检测(手部姿势估计)含源码 可实时检测
  • 手部关键点检测5:C++实现手部关键点检测(手部姿势估计)含源码 可实时检测

      

      

    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/183614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言总结(解题方法)

项目前期处理&#xff1a; 1.首先需要确定项目的背景知识&#xff0c;即主要的难点知识&#xff0c;如指针&#xff0c;数组&#xff0c;结构体&#xff0c;以检索自己是否对项目所需的背景知识足够了解。 2.确定问题实现方法&#xff0c;即题目本身的实现方法&#xff0c;在c语…

GoLong的学习之路,进阶,Redis

这个redis和上篇rabbitMQ一样&#xff0c;在之前我用Java从原理上进行了剖析&#xff0c;这里呢&#xff0c;我做项目的时候&#xff0c;也需要用到redis&#xff0c;所以这里也将去从怎么用的角度去写这篇文章。 文章目录 安装redis以及原理redis概念redis的应用场景有很多red…

【开源】基于Vue+SpringBoot的创意工坊双创管理系统

项目编号&#xff1a; S 049 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S049&#xff0c;文末获取源码。} 项目编号&#xff1a;S049&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 管理员端2.2 Web 端2.3 移动端 三、…

nodejs 沙盒逃逸

1.[GFCTF 2021]ez_calc 一道很有意思的一道nodejs的题 沙箱逃逸和绕过&#xff1a; F12 看源码 if(req.body.username.toLowerCase() ! admin && req.body.username.toUpperCase() ADMIN && req.body.passwd admin123){ // 登录成功&am…

如何关闭vue项目中的[eslint]校验

要关闭Vue项目中的ESLint校验&#xff0c;可以按照以下步骤进行操作&#xff1a; 打开项目根目录下的.eslintrc.js文件&#xff08;如果没有该文件&#xff0c;则创建一个新的&#xff09;。在文件中添加以下代码&#xff1a;module.exports {// 其他配置项...rules: {// 禁用…

Qt MVC示例 simpletreemodel 树模型

Qt MVC示例 simpletreemodel 树模型 从文本中读取树模型数据&#xff0c;缩进代表子项 TreeItem 表示一行字符串数据 treeitem.h #ifndef TREEITEM_H #define TREEITEM_H#include <QList> #include <QVariant>//! [0] class TreeItem { public:explicit Tree…

聚焦清晰度评价指标所用到的各种算法

首先&#xff0c;我想吐槽一下&#xff0c;看了好几篇聚焦评价函数的文章&#xff0c;说到底都是一篇文章转载或者重复上传&#xff0c;介绍了将近 15 种清晰度的算法&#xff0c;原文找了半天都没找到在哪&#xff0c;最多也仅能找到一些比较早的转载。 无参考图像的清晰度评…

习题3-5 三角形判断

习题3-5 三角形判断 给定平面上任意三个点的坐标(x1​,y1​)、(x2​,y2​)、(x3​,y3​)&#xff0c;检验它们能否构成三角形。 输入格式: 输入在一行中顺序给出六个[−100,100]范围内的数字&#xff0c;即三个点的坐标x1​、y1​、x2​、y2​、x3​、y3​。 输出格式: 若这3个…

压缩字符串II

null备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/string-compression/description/ 给你一个字符数组 chars &#xff0c;请使用下述算法压缩&#xff…

Moonbeam生态项目分析 — — 去中心化交易所Beamswap

流动性激励计划Moonbeam Ignite是帮助用户轻松愉快体验Moonbeam生态的趣味活动。在Moonbeam跨链连接的推动下&#xff0c;DeFi的各种可能性在这里爆发。DeFi或许不热门&#xff0c;但总有机会捡漏&#xff0c;了解Monbeam生态项目&#xff0c;我们邀请Moonbeam大使分享他们的研…

数学 --笔试、面试高频

数学 排列组合 10个相同的糖果&#xff0c;分给三个人&#xff0c;每个人至少要得一个。有()种不同分法 10个糖果&#xff0c;中间正好9个空挡&#xff0c;从这9个空挡中任意取出2个作为分割点&#xff0c;正好能把糖果分为3份&#xff0c;并且保证每一份中至少有一个糖果。…

动手学深度学习(五)---模型选择、过拟合、欠拟合

文章目录 一、理论知识1.训练误差和泛化误差 【相关总结】 一、理论知识 1.训练误差和泛化误差 训练误差&#xff1a;模型在训练数据上的误差泛化误差&#xff1a;模型在新数据上的误差 ex:根据摸底考试成绩来预测未来考试分数在过去的考试中表现很好&#xff08;训练误差&am…

【教程】 一文部署配置并入门 Redis

综述 什么是Redis Redis官网——Redis.io Redis, 作为一个高性能的键值对数据库&#xff0c;主要应用于以下场景&#xff1a; 缓存系统&#xff1a;由于其高速读写能力&#xff0c;Redis 非常适合用作缓存系统&#xff0c;减少数据库负载。 会话存储&#xff08;Session St…

【九日集训】第五天:排序

今天主要学习了C语言中的排序API,Qsort()本质上还是使用快速排序实现的; 具体使用方法:qsort(待排序数组, 数组长度, 每个元素字节长 sizeof(int), 比较函数) 比较函数 比较函数决定当前排序是升序还是降序,传入两个参数,返回1则交换,-1和0则不交换 一般使用方法 int cmp(…

在Spring Boot中使用不同的日志

前言&#xff0c;本篇就是介绍在Java中使用相关的日志&#xff0c;适合初学者看&#xff0c;如果对这篇不感兴趣的可以移步了&#xff0c;本篇主要围绕我们Java中的几种日志类型&#xff0c;也说不上有多深入&#xff0c;算的上浅入浅出吧&#xff0c;如果你有一段时间的开发经…

单片机_RTOS_架构

一. RTOS的概念 // 经典单片机程序 void main() {while (1){喂一口饭();回一个信息();} } ------------------------------------------------------ // RTOS程序 喂饭() {while (1){喂一口饭();} }回信息() {while (1){回一个信息();} }void main() {create_task(喂饭);cr…

OpenHarmony 4.0 Release 编译及报错

1、环境准备 安装下面这三东西&#xff0c;是为了下载 Harmony 源码 sudo apt install curl sudo apt install python3-pip sudo apt install git-lfs 安装下面这五个东西&#xff0c;是为了解决编译到最后报错(头铁不信的&#xff0c;你可以试试&#xff0c;等最后再安装) …

opencv常用函数表

函数名功能说明cv2.imread()读取图像文件cv2.imshow()显示图像窗口cv2.imwrite()保存图像文件cv2.cvtColor()颜色空间转换cv2.resize()图像缩放cv2.flip()图像翻转cv2.rectangle()绘制矩形cv2.circle()绘制圆形cv2.line()绘制直线cv2.putText()绘制文本cv2.bitwise_and()与操作…

【Hadoop】集群资源管理器 YARN

一、yarn 简介 Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.x 引入的分布式资源管理系统。主要用于解决 hadoop 1.x 架构中集群资源管理和数据计算耦合在一起&#xff0c;导致维护成本越来越高的问题。 yarn主要负责管理集群中的CPU和内存 用户可以将各种服…

linux 中断管理机制

中断的概念 中断是指在CPU正常运行期间&#xff0c;由于内外部事件或由程序预先安排的事件引起的 CPU 暂时停止正在运行的程序&#xff0c;转而为该内部或外部事件或预先安排的事件服务的程序中去&#xff0c;服务完毕后再返回去继续运行被暂时中断的程序。Linux中通常分为外部…