TA-Lib学习研究笔记——Overlap Studies(二)上

TA-Lib学习研究笔记——Overlap Studies(二)

1. Overlap Studies 指标

['BBANDS', 'DEMA', 'EMA', 'HT_TRENDLINE', 'KAMA', 'MA', 'MAMA', 'MAVP', 'MIDPOINT', 'MIDPRICE', 'SAR', 'SAREXT', 'SMA', 'T3', 'TEMA', 'TRIMA', 'WMA']

2.数据准备

get_data函数参数(代码,起始时间,终止时间)
返回dataframe 变量df ,column如下:

ts_code,trade_date,open,high,low,close,pre_close,change,pct_chg,vol,amount

以000002代码测试,2021年的数据,程序示例:

import numpy as np
import talib as tlb
import matplotlib.pyplot as plt
import pandas as pd  
from sqlalchemy import create_engineif __name__ == '__main__':#matplotlib作图设置plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号#数据获取start_date = '2021-01-01'end_date   = '2022-01-01'df = get_data('000002', start_date, end_date)

3.指标学习测试

(1)BBANDS

函数名:BBANDS
名称: 布林线指标
简介:其利用统计原理,求出股价的标准差及其信赖区间,从而确定股价的波动范围及未来走势,利用波带显示股价的安全高低价位,因而也被称为布林带。
语法:

upperband, middleband, lowerband = BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
参数:
(1)close:收盘价。
(2)timeperiod:计算的周期。
(3) nbdevup:上限价格相对于周期内标准偏差的倍数,取值越大,则上限越大,通道越宽。
(4)nbdevdn:下限价格相对于周期内标准偏差的倍数,取值越大,则下限越大,通道越宽。
(5)matype:平均值计算类型,0代表简单一定平均,还可以有加权平均等方式。

    df['upper'], df['middle'], df['lower'] = tlb.BBANDS(df['close'], timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)# 做图df[['close','upper','middle','lower']].plot(title='布林线')plt.grid() #启用网格plt.legend(['close', 'upper', 'middle', 'lower']) # 设置图示plt.show()

执行效果:
在这里插入图片描述

(2)DEMA双指数平均线

函数名:DEMA
名称: 双移动平均线
简介:两条移动平均线来产生趋势信号,较长期者用来识别趋势,较短期者用来选择时机。正是两条平均线及价格三者的相互作用,才共同产生了趋势信号。

output = talib.DEMA(close, timeperiod)

df['DEMA'] = tlb.DEMA(df['close'], timeperiod=20)# 做图
df[['close','DEMA']].plot(title='双移动平均线')
plt.grid() #启用网格
plt.legend(['close','DEMA']) # 设置图示
plt.show()

在这里插入图片描述

(3)EMA

函数名:EMA Exponential Moving Average
名称: 指数平均数
简介:是一种趋向类指标,其构造原理是仍然对价格收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势的变动趋势。

real = EMA(close, timeperiod=20)

df['EMA'] = tlb.EMA(df['close'], timeperiod=20)# 做图
df[['close','EMA']].plot(title='指数平均数')
plt.grid() #启用网格
plt.legend(['close','EMA']) # 设置图示
plt.show()

在这里插入图片描述

(4)HT_TRENDLINE

函数名:HT_TRENDLINE
名称: 希尔伯特瞬时变换
简介:是一种趋向类指标,其构造原理是仍然对价格收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势的变动趋势。

real = HT_TRENDLINE(close)

df['HT_TRENDLINE'] = tlb.HT_TRENDLINE(df['close'])# 做图
df[['close','HT_TRENDLINE']].plot(title='希尔伯特瞬时变换')
plt.grid() #启用网格
plt.legend(['close','HT_TRENDLINE']) # 设置图示
plt.show()

在这里插入图片描述

(5)KAMA

名称:KAMA Kaufman Adaptive Moving Average 考夫曼自适应移动平均线
简介:短期均线贴近价格走势,灵敏度高,但会有很多噪声,产生虚假信号;长期均线在判断趋势上一般比较准确,但是长期均线有着严重滞后的问题。我们想得到这样的均线,当价格沿一个方向快速移动时,短期的移动平均线是最合适的;当价格在横盘的过程中,长期移动平均线是合适的。
语法:

real = KAMA(close, timeperiod=30)

df['KAMA'] = tlb.KAMA(df['close'], timeperiod=30)# 做图
df[['close','KAMA']].plot(title='考夫曼自适应移动平均线')
plt.grid() #启用网格
plt.legend(['close','KAMA']) # 设置图示
plt.show()

在这里插入图片描述

(6)MA

函数名:MA - Moving average 移动平均线
名称: 移动平均线
简介:移动平均线,Moving Average,简称MA,原本的意思是移动平均,由于将其制作成线形,所以一般称之为移动平均线,简称均线。它是将某一段时间的收盘价之和除以该周期。 比如日线MA5指5天内的收盘价除以5 。

语法:
real = MA(close, timeperiod=30, matype=0)

df['MA5'] = tlb.MA(df['close'], timeperiod=5, matype=0)
df['MA10'] = tlb.MA(df['close'], timeperiod=10, matype=0)
df['MA30'] = tlb.MA(df['close'], timeperiod=30, matype=0)# 做图
df[['close','MA5','MA10','MA30']].plot(title='移动平均线')
plt.grid() #启用网格
plt.legend(['close','MA5','MA10','MA30']) # 设置图示
plt.show()

在这里插入图片描述

(7)MAMA

MAMA是MESA自适应移动平均线,全称为MESA Adaptive Moving Average。它是根据价格的移动平均线和自适应移动平均线来计算的,它的设计初衷是能够更好地适应不同市场的变化。

指标作用
MAMA指标使用了一种称为Hilbert变换的数学方法来计算价格的移动平均线。这种方法可以将价格的周期性变化进行平滑处理,减少了滞后性,使得MAMA指标能够更快地响应市场的变化。
MAMA指标由两条线组成:MAMA线和FAMA线。MAMA线是根据价格的移动平均线计算得出的,它可以显示价格的趋势方向。FAMA线是根据MAMA线计算得出的,它可以显示价格的趋势变化的速度。
MAMA指标的应用主要有两个方面:

  1. 确定趋势:当MAMA线向上穿过FAMA线时,可以视为买入信号,表示价格可能会上涨;当MAMA线向下穿过FAMA线时,可以视为卖出信号,表示价格可能会下跌。
  2. 确定超买超卖:当MAMA线超过了价格的最高点时,可以视为超买信号,表示价格可能会回调;当MAMA线低于价格的最低点时,可以视为超卖信号,表示价格可能会反弹。
    语法:

mama, fama = MAMA(close)

df['mama'], df['fama'] = tlb.MAMA(df['close'])
# 做图
df[['close','mama','fama']].plot(title='自适应移动平均线')
plt.grid() #启用网格
plt.legend(['close','mama','fama']) # 设置图示
plt.show()

在这里插入图片描述

(8)MAVP

Moving average with variable period,计算带有可变周期的移动平均线。
语法:
下面是 MAVP 函数的参数说明:

  • close: 必需参数,表示收盘价序列的数组或 pandas Series。
  • periods: 必需参数,表示要进行移动平均的周期值。它是一个包含多个周期值的数组。
  • minperiod: 可选参数,表示移动平均线计算的最小周期。默认值为 2。
  • maxperiod: 可选参数,表示移动平均线计算的最大周期。默认值为 30。
  • matype: 可选参数,表示移动平均线的类型。可以选择以下类型:
    0: 简单移动平均线(SMA)
    1: 加权移动平均线(WMA)
    2: 指数移动平均线(EMA)
    3: 光滑移动平均线(SMA with offset)默认值为 0。

real = MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)

注意:periods参数必须是numpy.array ,类型必须是float ,长度与close的一致。
测试了多次,才搞明白了periods参数。开始总是报不是浮点数,periods用浮点数,报错:Exception: input array lengths are different 。
原因就是close和periods长度必须一致。

#periods 必须是numpy.array ,类型必须是float ,长度与close的一致。测试用赋值都是5,一周的交易日
length = len(df['close'])  
value = 5  
periods = np.full(length, value, dtype=float)  df['MAVP'] = tlb.MAVP(df['close'], periods, minperiod=5, maxperiod=10, matype=0)# 做图
df[['close','MAVP']].plot(title='变周期移动平均线')
plt.grid() #启用网格
plt.legend(['close','MAVP']) # 设置图示
plt.show()

在这里插入图片描述

(9)MIDPOINT - MidPoint over period

MIDPOINT函数用于计算指定期间内的中点值
语法:

real = MIDPOINT(close, timeperiod=14)

示例:

df['MIDPOINT'] = tlb.MIDPOINT(df['close'], timeperiod=14)
# 做图
df[['close','MIDPOINT']].plot(title='MidPoint over period')
plt.grid() #启用网格
plt.legend(['close','MIDPOINT']) # 设置图示
plt.show()

在这里插入图片描述

(10)MIDPRICE

MIDPRICE - Midpoint Price over period
在TA-Lib中,MIDPRICE函数用于计算指定期间内的中间价格。它基于最高价、最低价来计算一个期间内的中间价格。
参数:

  • high:一个包含最高价序列的数组或指标。
  • low:一个包含最低价序列的数组或指标。
  • timePeriod:期间长度,表示要计算中间价格的期间数。

语法:

real = MIDPRICE(high, low, timeperiod=14)

示例:


df['MIDPRICE'] = tlb.MIDPRICE(df['high'], df['low'],timeperiod=14)
# 做图
df[['high','low','MIDPRICE']].plot(title='Midpoint Price over period')
plt.grid() #启用网格
plt.legend(['high','low','MIDPRICE']) # 设置图示
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/183500.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UI自动化测试的正确姿势 —— Airtest设备连接API详解第一篇

一、背景 Airtest作为一款优秀的自动化测试工具,有着强大的API功能,处理日常自动化测试过程中需要的各类操作。今天就给大家逐一介绍关于设备连接和常用API部分,结合自动化测试中的各类需求,看看如何通过使用Airtest来快速实现。…

leetcode 15. 三数之和(优质解法)

代码&#xff1a; class Solution {public static List<List<Integer>> threeSum(int[] nums) {Arrays.sort(nums);List<List<Integer>> listsnew ArrayList<>();int lengthnums.length;for(int i0;i<length-3;){int lefti1;int rightlength…

【星火大模型】api使用

讯飞星火官方首页 准备工作 注册讯飞星火账号申请开发者api试用 从一个demo开始 讯飞星火官方的程序员为我们提供了非常优秀的demo&#xff0c;基本涵盖了大多数常用语言。 demo下载链接 这里我选用Java带上下文调用示例 下载后可以看到这是一个idea项目&#xff0c;直接…

Python实现学生信息管理系统(详解版)

Python实现学生信息管理系统-详解版 个人简介实验名称&#xff1a;学生信息管理系统系统功能实验步骤详讲添加入住学生信息删除学生的住宿信息修改学生的住宿信息查询学生的住宿信息显示所有学生住宿信息显示所有请假学生的信息 运行截图展示1.主界面2.添加新的入住学生信息3.显…

Django路由分发

首先明白一点&#xff0c;Django的每一个应用下都可以有自己的templates文件夹&#xff0c;urls.py文件夹&#xff0c;static文件夹&#xff0c;基于这个特点&#xff0c;Django能够很好的做到分组开发&#xff08;每个人只写自己的app&#xff09;&#xff0c;作为老大&#x…

如何自定义spring-boot-starter

1. 创建自定义starter 1.1 生成Maven工程 mvn archetype:generate -DarchetypeGroupIdorg.apache.maven.archetypes -DarchetypeArtifactIdmaven-archetype-quickstart -DarchetypeVersion1.4交互式输入groupId、artificatId、version&#xff0c;生成Maven工程后用IDEA打开 …

element ui 表格合计项合并

如图所示&#xff1a; 代码&#xff1a; <el-table height"400px" :data"tableData " borderstyle"width: 100%"stripe show-summaryref"table"id"table"> </el-table>监听表格 watch: { //监听table这个对象…

【华为数通HCIP | 网络工程师】821刷题日记-IS-IS(2)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

【面试】typescript

目录 为什么用TypeScript&#xff1f; TS和JS的区别 控制类成员可见性的访问关键字&#xff1f; public protected&#xff09;&#xff0c;该类及其子类都可以访问它们。 但是该类的实例无法访问。 私有&#xff08;private&#xff09;&#xff0c;只有类的成员可以访问…

Apache Flink(三):Flink核心特性及应用场景

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…

三次握手和四次挥手

TCP 协议简述 TCP 提供面向有连接的通信传输&#xff0c;面向有连接是指在传送数据之前必须先建立连接&#xff0c;数据传送完成后要释放连接。 无论哪一方向另一方发送数据之前&#xff0c;都必须先在双方之间建立一条连接。在TCP/IP协议中&#xff0c;TCP协议提供可靠的连接…

com.mongodb.MongoSocketOpenException: Exception opening socket

估计mongodb数据库没开启&#xff0c;或者链接错误了&#xff0c;谁又改了&#xff0c;唉 2023-11-29 16:19:45.818 INFO 39552 --- [127.0.0.1:27017] org.mongodb.driver.cluster : Exception in monitor thread while connecting to server 127.0.0.1:27017…

Intellij idea 内存不够用了,怎么处理?

目录 如何判断内存不够用了 下面演示一下如何开启内存指示器&#xff08;Memory Indicator&#xff09; 解决方案 第一种&#xff1a;双击"内存指示器(Mempory Indicator)" 第二种&#xff1a;增大Intellij Idea 最大可使用内存 如何判断内存不够用了 运行项目后…

(一)基于高尔夫优化算法GOA求解无人机三维路径规划研究(MATLAB)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、高尔夫优化算法GOA简介 高尔夫优化算法…

Linux 基本语句_13_消息队列

概念&#xff1a; 不同进程能通过消息队列来进行通信&#xff0c;不同进程也能获取或发送特定类型的消息&#xff0c;即选择性的收发消息。 一般一个程序采取子进程发消息&#xff0c;父进程收消息的模式 常用函数功能&#xff1a; fork(); // 创建子进程 struct msgbuf{ …

(C++)移动零--双指针法

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://le…

Web安全漏洞分析-XSS(下)

随着互联网的迅猛发展&#xff0c;Web应用的普及程度也愈发广泛。然而&#xff0c;随之而来的是各种安全威胁的不断涌现&#xff0c;其中最为常见而危险的之一就是跨站脚本攻击&#xff08;Cross-Site Scripting&#xff0c;简称XSS&#xff09;。XSS攻击一直以来都是Web安全领…

ntopng如何将漏洞扫描与流量监控相结合,以提高网络安全性

来源&#xff1a;艾特保IT 虹科干货 | ntopng如何将漏洞扫描与流量监控相结合&#xff0c;以提高网络安全性 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; ntopng为人所知的“身份”是被动流量监控。然而&#xff0c;如今的ntopng6.0也进化出主动监控功能来&#xf…

人工智能原理复习--知识表示(二)

文章目录 上一篇产生式表示法推理方式 结构化表示语义网络语义网络表示知识的方法和步骤应用题目 框架表示法下一篇 上一篇 人工智能原理复习–知识表示&#xff08;一&#xff09; 产生式表示法 把推理和行为的过程用产生式规则表示&#xff0c;所以又称基于规则的系统。 产…

支持向量机,硬间隔,软间隔,核技巧,超参数设置,分类与回归

SVM&#xff08;Support Vector Machine&#xff0c;支持向量机&#xff09;是一种非常常用并且有效的监督学习算法&#xff0c;在许多领域都有广泛应用。它可以用于二分类问题和多分类问题&#xff0c;并且在处理高维数据和特征选择方面非常强大。SVM算法的核心思想是通过找到…