【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】

文章目录

  • 一、数值积分法
    • 1. 一般步骤
    • 2. 数值方法
  • 二、欧拉方法(Euler Method)
    • 1. 向前欧拉法(前向欧拉法)
      • a. 基本理论
      • b. 典例解析
      • c. 算法实现

  常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(Ordinary Differential Equations, ODEs)的问题。

一、数值积分法

1. 一般步骤

  • 确定微分方程:

    • 给定微分方程组 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x))
  • 确定初始条件:

    • 初值问题包含一个初始条件 y ( a ) = y 0 y(a) = y_0 y(a)=y0,其中 a a a 是定义域的起始点, y 0 y_0 y0 是初始值。
  • 选择数值方法:

    • 选择适当的数值方法来近似解(需要考虑精度、稳定性和计算效率),常见的数值方法包括欧拉方法、改进的欧拉方法、Runge-Kutta 方法等。
  • 离散化定义域:

    • 将定义域 [ a , b ] [a, b] [a,b] 分割为若干小步,即选择合适的步长 h h h。通常,较小的步长能够提高数值解的精度,但也增加计算成本。
  • 数值迭代:

    • 使用选定的数值方法进行迭代计算:根据选择的方法,计算下一个点的函数值,并更新解。
  • 判断停止条件:

    • 判断是否达到满足指定精度的近似解:可以使用某种误差估计方法,例如控制局部截断误差或全局误差。
  • 输出结果:

    • 最终得到在给定定义域上满足初值问题的近似解。

2. 数值方法

  1. 欧拉方法(Euler Method):

    • 基本思想:根据微分方程的定义,使用离散步长逼近导数,进而逼近下一个点的函数值。
    • 公式: y n + 1 = y n + h f ( t n , y n ) y_{n+1} = y_n + h f(t_n, y_n) yn+1=yn+hf(tn,yn)
      其中, y n y_n yn是第 n n n 步的函数值, h h h是步长, f ( t n , y n ) f(t_n, y_n) f(tn,yn) 是在点 ( t n , y n ) (t_n, y_n) (tn,yn) 处的导数。
  2. 改进的欧拉方法(Improved Euler Method 或梯形法 Trapezoidal Rule):

    • 基本思想:使用两次近似来提高精度,首先使用欧拉方法计算中间点,然后用该点的导数估计值来计算下一个点。
    • 公式: y n + 1 = y n + h 2 [ f ( t n , y n ) + f ( t n + 1 , y n + h f ( t n , y n ) ) ] y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))] yn+1=yn+2h[f(tn,yn)+f(tn+1,yn+hf(tn,yn))]
  3. Runge-Kutta 方法:

    • 基本思想:通过多个阶段的计算来提高精度。其中最常见的是四阶 Runge-Kutta 方法。
    • 公式:
      k 1 = h f ( t n , y n ) k_1 = hf(t_n, y_n) k1=hf(tn,yn) k 2 = h f ( t n + h 2 , y n + k 1 2 ) k_2 = hf(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}) k2=hf(tn+2h,yn+2k1) k 3 = h f ( t n + h 2 , y n + k 2 2 ) k_3 = hf(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}) k3=hf(tn+2h,yn+2k2) k 4 = h f ( t n + h , y n + k 3 ) k_4 = hf(t_n + h, y_n + k_3) k4=hf(tn+h,yn+k3) y n + 1 = y n + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) yn+1=yn+61(k1+2k2+2k3+k4)

  这些方法中,步长 h h h 是一个关键参数,它决定了离散化的程度,选择合适的步长对于数值解的准确性和稳定性非常重要。

二、欧拉方法(Euler Method)

1. 向前欧拉法(前向欧拉法)

a. 基本理论

  1. 等距节点组:

    • { X n } \{X_n\} {Xn}被定义为区间 [ a , b ] [a, b] [a,b] 上的等距节点组,其中 X n = a + n h X_n = a + nh Xn=a+nh h h h 是步长, n n n 是节点索引,这样的离散化有助于数值计算。
  2. 向前差商近似微商:

    • 在节点 X n X_n Xn 处,通过向前差商 y ( X n + 1 ) − y ( X n ) h \frac{y(X_{n+1}) - y(X_n)}{h} hy(Xn+1)y(Xn) 近似替代微分方程 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x)) 中的导数项,得到 y ′ ( X n ) ≈ y ( X n + 1 ) − y ( X n ) h = f ( X n , y ( X n ) ) y'(X_n) \approx \frac{y(X_{n+1}) - y(X_n)}{h} = f(X_n, y(X_n)) y(Xn)hy(Xn+1)y(Xn)=f(Xn,y(Xn))
    • 这个近似通过将差商等于导数的思想,将微分方程转化为递推关系式。
  3. 递推公式:

    • 将上述近似公式改为等式,得到递推公式 y n + 1 = y n + h f ( X n , y n ) y_{n+1} = y_n + hf(X_n, y_n) yn+1=yn+hf(Xn,yn)
    • 这个公式是 Euler 方法的核心,通过这个公式可以逐步计算得到近似解的数值。
  4. 步骤解释:

    • n = 0 n=0 n=0 时,使用初始条件 y 0 y_0 y0 计算 y 1 y_1 y1
    • 然后,利用 y 1 y_1 y1 计算 y 2 y_2 y2,以此类推,得到 y n y_n yn,直到 n = N n=N n=N,其中 N N N 是节点数。
    • 这个过程形成了一个逐步逼近微分方程解的序列。
  5. 几何解释:

    • 在几何上,Euler 方法的求解过程可以解释为在积分曲线上通过连接相邻点的折线来逼近微分方程的解,因而被称为折线法
  6. 截断误差:

    • 通过 Taylor 展开,可以得到 Euler 方法的截断误差公式(忽略 h 2 h^2 h2 项) y ( x n + 1 ) = y ( x n ) + h f ( X n , y n ) + O ( h 2 ) y(x_{n+1}) = y(x_n) + hf(X_n, y_n) + O(h^2) y(xn+1)=y(xn)+hf(Xn,yn)+O(h2)
    • 这表明 Euler 方法的误差主要来自于 h h h 的一阶项,因此选择较小的步长可以提高方法的精度。

b. 典例解析

在这里插入图片描述

计算过程:

  1. 初始化: x 0 = 0 x_0 = 0 x0=0, y 0 = 1 y_0 = 1 y0=1.
  2. 计算 x 1 x_1 x1 y 1 y_1 y1
    x 1 = x 0 + h = 0.1 x_1 = x_0+h=0.1 x1=x0+h=0.1 y 1 = y 0 + h f ( x 0 , y 0 ) = 1 + 0.1 ⋅ ( y 0 − 2 x 0 y 0 ) = 1 + 0.1 ⋅ 1 = 1.1 y_1 = y_0 + h f(x_0, y_0) = 1 + 0.1 \cdot (y_0-\frac{2x_0}{y_0}) = 1 + 0.1 \cdot 1 = 1.1 y1=y0+hf(x0,y0)=1+0.1(y0y02x0)=1+0.11=1.1.
  3. 计算 x 2 x_2 x2 y 2 y_2 y2
    x 2 = x 1 + h = 0.2 x_2 = x_1+h=0.2 x2=x1+h=0.2 y 2 = y 1 + h f ( x 1 , y 1 ) = 1.1 + 0.1 ⋅ ( y 1 − 2 x 1 y 1 ) = 1.1 + 0.1 ⋅ ( 1.1 − 0.181819 ) = 1.191818 y_2 = y_1 + h f(x_1, y_1) = 1.1 + 0.1 \cdot (y_1-\frac{2x_1}{y_1}) = 1.1 + 0.1 \cdot (1.1-0.181819)= 1.191818 y2=y1+hf(x1,y1)=1.1+0.1(y1y12x1)=1.1+0.1(1.10.181819)=1.191818.
  4. 计算 x 3 x_3 x3 y 3 y_3 y3
    … … … … … … ……………… ………………

c. 算法实现

import numpy as np
import matplotlib.pyplot as pltdef forward_euler(f, y0, a, b, h):"""使用向前欧拉法求解一阶常微分方程初值问题Parameters:- f: 函数,表示微分方程的右侧项,形式为 f(x, y)- y0: 初始条件,表示在 x=a 处的函数值- a: 区间起点- b: 区间终点- h: 步长Returns:- x_values: 区间 [a, b] 上的离散节点- y_values: 对应节点上的函数值的近似解"""num_steps = int((b - a) / h) + 1  # 计算步数x_values = np.linspace(a, b, num_steps)  # 生成离散节点y_values = np.zeros(num_steps)  # 初始化结果数组y_values[0] = y0  # 设置初始条件# 使用向前欧拉法进行逐步迭代for i in range(1, num_steps):x = x_values[i - 1]y = y_values[i - 1]y_values[i] = y + h * f(x, y)return x_values, y_values# 示例:求解 y' = y - 2x/y,初始条件 y(0) = 1 在区间 [0, 1] 上的近似解
def example_function(x, y):return y - 2*x/ya, b = 0, 1  # 区间 [a, b]
y0 = 1  # 初始条件 y(0) = 1
h = 0.1  # 步长x_values, y_values = forward_euler(example_function, y0, a, b, h)# 绘制结果
plt.plot(x_values, y_values, label='Forward Euler')
plt.plot(x_values, np.sqrt(1+2*x_values), label='Exact Solution')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/179607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++初阶】五、类和对象(日期类的完善、流运算符重载函数、const成员、“”取地址运算符重载)

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【C初阶】四、类和对象 (构造函数、析构函数、拷贝构造函数、赋值运算符重载函数)-CSDN博客 一 . 日期类的完善 此次日期类的成员函数,采用声明…

Android中的多进程

在Android中也可以像pc一样开启多进程,这在android的编程中通常是比较少见的,以为在一个app基本上都是单进程工作就已经足够了,有一些特殊的场景,我们需要用多进程来做一些额外的工作,比如下载工作等。 在Android的An…

Elasticsearch底层原理分析——新建、索引文档

es版本 8.1.0 重要概念回顾 Elasticsearch Node的角色 与下文流程相关的角色介绍: Node Roles配置主要功能说明masternode.roles: [ master ]有资格参与选举成为master节点,从而进行集群范围的管理工作,如创建或删除索引、跟踪哪些节点是…

Postman进阶功能实战演练

Postman除了前面介绍的一些功能,还有其他一些小功能在日常接口测试或许用得上。今天,我们就来盘点一下,如下所示: 1.数据驱动 想要批量执行接口用例,我们一般会将对应的接口用例放在同一个Collection中,然…

一种新的基于物理的AlGaN/GaN HFET紧凑模型

标题:A new physics-based compact model for AlGaN/GaN HFETs (IEEE MTT-S International Microwave Symposium) 摘要 摘要 - 针对AlGaN/GaN HFET,提出了一种无拟合参数的物理解析模型。对于非饱和操作,建立了两个接入区和栅极下方I-V特性的…

消息队列进阶-1.消息队列的应用场景与选型

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码、Kafka原理🔥如果感觉博主的文章还不错的话,请&#x1f44…

函数声明与函数表达式

函数声明 一个标准的函数声明&#xff0c;由关键字function 、函数名、形参和代码块组成。 有名字的函数又叫具名函数。 举个例子&#xff1a; function quack(num) { for (var i 0; i < num; i) {console.log("Quack!")} } quack(3)函数表达式 函数没有名称…

skywalking告警qq邮箱发送

首先开启发送接收qq邮箱的权限 开启之后&#xff0c;会让你发送信息&#xff0c;按着一系列操作&#xff0c;获得password &#xff08;授权码&#xff08;例如&#xff0c;qq开启SMTP授权码&#xff0c;qq授权码16位&#xff09;&#xff09; <!-- mail邮箱-->…

传智杯-题目1

运气 一&#xff1a;对于每一的1到6都进行枚举&#xff0c;进行递归操作 二&#xff1a;如果位数到了指定的n的时候&#xff0c;递归的条件&#xff0c;进行判断是否可以整除操作 #include<iostream> #include<algorithm> using namespace std; long long n, k, an…

Java抽象类:类的幕后黑手,提供继承和扩展的框架。

&#x1f451;专栏内容&#xff1a;Java⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、抽象类的概念二、注意事项三、抽象类的作用 一、抽象类的概念 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘…

vue3 element plus 表单验证 数组嵌套对象格式验证 动态验证等

基本结构 model 表单数据对象 rules 验证对象 prop model 的键名 <template><el-form ref"ruleFormRef" :model"ruleForm" :rules"rules"><el-form-item label"手机号" prop"mobile"><el-input v-mod…

鸿蒙原生应用/元服务开发-AGC分发如何生成密钥和和证书请求文件

HarmonyOS通过数字证书&#xff08;.cer文件&#xff09;和Profile文件&#xff08;.p7b文件&#xff09;等签名信息来保证应用的完整性&#xff0c;应用如需上架到华为应用市场必须通过签名校验。因此&#xff0c;开发者需要使用发布证书和Profile文件对应用进行签名后才能发布…

互联网程序设计HTML+CSS+JS

一、HTML基础 HTML超文本标记语言。 超文本&#xff1a;链接&#xff1b; 标记&#xff1a;标签&#xff0c;带尖括号的文本。 1、标签结构 标签要成对出现&#xff0c;中间包裹内容&#xff1b; <>里面放英文字母&#xff08;标签名&#xff09;&#xff1b; 结束…

在centos7上源码安装nginx

1. 安装必要的编译工具和依赖项 在编译Nginx之前&#xff0c;你需要安装一些编译工具和依赖项。可以通过以下命令安装&#xff1a; yum install gcc-c pcre-devel zlib-devel make 2. 下载Nginx源代码 从Nginx官网下载最新的源代码。你可以使用wget命令来下载&#xff1a; …

Java 基础学习(三)循环流程控制与数组

1 循环流程控制 1.1 循环流程控制概述 1.1.1 什么是循环流程控制 当一个业务过程需要多次重复执行一个程序单元时&#xff0c;可以使用循环流程控制实现。 Java中包含3种循环结构&#xff1a; 1.2 for循环 1.2.1 for循环基础语法 for循环是最常用的循环流程控制&#xff…

redis运维(二十二)redis 的扩展应用 lua(四)

一 最佳实践 ① 铺垫 最佳实践&#xff1a;1、把redis操作所需的key通过KEYS进行参数传递2、其它的lua脚本所需的参数通过ARGV进行传递. redis lua脚本原理 Redis Lua脚本的执行原理 ② 删除指定的脚本缓存 ③ redis集群模式下使用lua脚本注意事项 1、常见报错现象 C…

『 Linux 』进程优先级

文章目录 什么是优先级Linux下的进程优先级PRI与NI使用top查看进程以及对进程的优先级的修改 进程优先级的其他概念竞争性与独立性并发与并行 什么是优先级 优先级,顾名思义,即在同一环境下不同单位对同一个资源的享有顺序; 一般优先级高的单位将优先占有该资源; 在进程当中进…

Python中如何用栈实现队列

目录 一、引言 二、使用两个栈实现队列 三、性能分析 四、应用场景 五、代码示例 六、优缺点总结 一、引言 队列&#xff08;Queue&#xff09;和栈&#xff08;Stack&#xff09;是计算机科学中常用的数据结构。队列是一种特殊的线性表&#xff0c;只允许在表的前端进行…

Leetcode 380. O(1) 时间插入、删除和获取随机元素

文章目录 题目代码&#xff08;11.28 首刷看解析&#xff09; 题目 Leetcode 380. O(1) 时间插入、删除和获取随机元素 代码&#xff08;11.28 首刷看解析&#xff09; 1.length:表示的是数组的长度 数组 2.length():表示的是字符串的长度 字符串 3.size():表示的是集合中有多…

万宾科技可燃气体监测仪科技作用全览

燃气管网在运行过程中经常会遇到燃气管道泄漏的问题&#xff0c;燃气泄漏甚至会引起爆炸&#xff0c;从而威胁人民的生命和财产安全&#xff0c;因此对燃气管网进行定期巡检是十分必要的工作。但是传统的人工巡检已不能满足城市的需要&#xff0c;除了选择增加巡检人员之外&…