【深度学习笔记】05 线性回归

线性回归

线性回归基于几个简单的假设:
首先,假设自变量 x \mathbf{x} x和因变量 y y y之间的关系是线性的,
y y y可以表示为 x \mathbf{x} x中元素的加权和,这里通常允许包含观测值的一些噪声;
其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

为了解释线性回归,我们举一个实际的例子:
我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。
为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。
这个数据集包括了房屋的销售价格、面积和房龄。
在机器学习的术语中,该数据集称为训练数据集(training data set)
训练集(training set)。
每行数据(比如一次房屋交易相对应的数据)称为样本(sample),
也可以称为数据点(data point)或数据样本(data instance)。
我们把试图预测的目标(比如预测房屋价格)称为标签(label)或目标(target)。
预测所依据的自变量(面积和房龄)称为特征(feature)或协变量(covariate)。

通常,我们使用 n n n来表示数据集中的样本数。
对索引为 i i i的样本,其输入表示为 x ( i ) = [ x 1 ( i ) , x 2 ( i ) ] ⊤ \mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}]^\top x(i)=[x1(i),x2(i)]
其对应的标签是 y ( i ) y^{(i)} y(i)

线性模型

线性假设是指目标(房屋价格)可以表示为特征(面积和房龄)的加权和,如下面的式子:

p r i c e = w a r e a ⋅ a r e a + w a g e ⋅ a g e + b . \mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathrm{age}} \cdot \mathrm{age} + b. price=wareaarea+wageage+b.
:eqlabel:eq_price-area

:eqref:eq_price-area中的 w a r e a w_{\mathrm{area}} warea w a g e w_{\mathrm{age}} wage
称为权重(weight),权重决定了每个特征对我们预测值的影响。
b b b称为偏置(bias)、偏移量(offset)或截距(intercept)。
偏置是指当所有特征都取值为0时,预测值应该为多少。
即使现实中不会有任何房子的面积是0或房龄正好是0年,我们仍然需要偏置项。
如果没有偏置项,我们模型的表达能力将受到限制。
严格来说, :eqref:eq_price-area是输入特征的一个
仿射变换(affine transformation)。
仿射变换的特点是通过加权和对特征进行线性变换(linear transformation),
并通过偏置项来进行平移(translation)。

给定一个数据集,我们的目标是寻找模型的权重 w \mathbf{w} w和偏置 b b b
使得根据模型做出的预测大体符合数据里的真实价格。
输出的预测值由输入特征通过线性模型的仿射变换决定,仿射变换由所选权重和偏置确定。

而在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。
当我们的输入包含 d d d个特征时,我们将预测结果 y ^ \hat{y} y^
(通常使用“尖角”符号表示 y y y的估计值)表示为:

y ^ = w 1 x 1 + . . . + w d x d + b . \hat{y} = w_1 x_1 + ... + w_d x_d + b. y^=w1x1+...+wdxd+b.

将所有特征放到向量 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd中,
并将所有权重放到向量 w ∈ R d \mathbf{w} \in \mathbb{R}^d wRd中,
我们可以用点积形式来简洁地表达模型:

y ^ = w ⊤ x + b . \hat{y} = \mathbf{w}^\top \mathbf{x} + b. y^=wx+b.
:eqlabel:eq_linreg-y

在 :eqref:eq_linreg-y中,
向量 x \mathbf{x} x对应于单个数据样本的特征。
用符号表示的矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d
可以很方便地引用我们整个数据集的 n n n个样本。
其中, X \mathbf{X} X的每一行是一个样本,每一列是一种特征。

对于特征集合 X \mathbf{X} X,预测值 y ^ ∈ R n \hat{\mathbf{y}} \in \mathbb{R}^n y^Rn
可以通过矩阵-向量乘法表示为:

y ^ = X w + b {\hat{\mathbf{y}}} = \mathbf{X} \mathbf{w} + b y^=Xw+b

这个过程中的求和将使用广播机制。

解析解

线性回归刚好是一个很简单的优化问题。
与我们将在本书中所讲到的其他大部分模型不同,线性回归的解可以用一个公式简单地表达出来,
这类解叫作解析解(analytical solution)。
首先,我们将偏置 b b b合并到参数 w \mathbf{w} w中,合并方法是在包含所有参数的矩阵中附加一列。
我们的预测问题是最小化 ∥ y − X w ∥ 2 \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 yXw2
这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。
将损失关于 w \mathbf{w} w的导数设为0,得到解析解:

w ∗ = ( X ⊤ X ) − 1 X ⊤ y . \mathbf{w}^* = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y}. w=(XX)1Xy.

像线性回归这样的简单问题存在解析解,但并不是所有的问题都存在解析解。
解析解可以进行很好的数学分析,但解析解对问题的限制很严格,导致它无法广泛应用在深度学习里。

随机梯度下降

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值)
关于模型参数的导数(在这里也可以称为梯度)。
但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。
因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,
这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B
它是由固定数量的训练样本组成的。
然后,我们计算小批量的平均损失关于模型参数的导数(也可以称为梯度)。
最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

我们用下面的数学公式来表示这一更新过程( ∂ \partial 表示偏导数):

( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) . (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). (w,b)(w,b)BηiB(w,b)l(i)(w,b).

算法的步骤如下:
(1)初始化模型参数的值,如随机初始化;
(2)从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。
对于平方损失和仿射变换,我们可以明确地写成如下形式:

w ← w − η ∣ B ∣ ∑ i ∈ B ∂ w l ( i ) ( w , b ) = w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) ) , b ← b − η ∣ B ∣ ∑ i ∈ B ∂ b l ( i ) ( w , b ) = b − η ∣ B ∣ ∑ i ∈ B ( w ⊤ x ( i ) + b − y ( i ) ) . \begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right),\\ b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right). \end{aligned} wbwBηiBwl(i)(w,b)=wBηiBx(i)(wx(i)+by(i)),bBηiBbl(i)(w,b)=bBηiB(wx(i)+by(i)).
:eqlabel:eq_linreg_batch_update

公式 :eqref:eq_linreg_batch_update中的 w \mathbf{w} w x \mathbf{x} x都是向量。

∣ B ∣ |\mathcal{B}| B表示每个小批量中的样本数,这也称为批量大小(batch size)。
η \eta η表示学习率(learning rate)。

批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。
这些可以调整但不在训练过程中更新的参数称为超参数(hyperparameter)。
调参(hyperparameter tuning)是选择超参数的过程。
超参数通常是我们根据训练迭代结果来调整的,
而训练迭代结果是在独立的验证数据集(validation dataset)上评估得到的。

线性回归的从零开始实现

从零开始实现整个方法,包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。

%matplotlib inline
import random
import torch
from d2l import torch as d2l

生成数据集

生成一个包含1000个样本的数据集,
每个样本包含从标准正态分布中采样的2个特征。
我们的合成数据集是一个矩阵 X ∈ R 1000 × 2 \mathbf{X}\in \mathbb{R}^{1000 \times 2} XR1000×2

我们使用线性模型参数 w = [ 2 , − 3.4 ] ⊤ \mathbf{w} = [2, -3.4]^\top w=[2,3.4] b = 4.2 b = 4.2 b=4.2
和噪声项 ϵ \epsilon ϵ生成数据集及其标签:

y = X w + b + ϵ . \mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon. y=Xw+b+ϵ.

ϵ \epsilon ϵ可以视为模型预测和标签时的潜在观测误差。
在这里我们认为标准假设成立,即 ϵ \epsilon ϵ服从均值为0的正态分布。
为了简化问题,我们将标准差设为0.01。
下面的代码生成合成数据集。

def synthetic_data(w, b, num_examples):  #@save"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)  

features中的每一行都包含一个二维数据样本,labels中的每一行都包含一维标签值(一个标量)

print('features:', features[0], '\nlabel:', labels[0])
features: tensor([-0.4836, -0.8441]) 
label: tensor([6.1063])

通过生成第二个特征features[:, (1)]和labels的散点图,可以直观观察到两者之间的线性关系

d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);

在这里插入图片描述

读取数据集

定义一个data_iter函数,
该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量

每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]

读取第一个小批量数据样本并打印。
每个批量的特征维度显示批量大小和输入特征数。
同样的,批量的标签形状与batch_size相等。

batch_size = 10for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break
tensor([[ 0.3747,  0.7438],[-0.9089, -1.8827],[ 1.7131,  0.8056],[ 0.8595,  1.3511],[-1.8953, -0.4136],[-0.1327, -0.5880],[ 0.6790, -0.2707],[-0.6167, -1.1107],[-0.4787, -0.1805],[-0.5738, -0.6744]]) tensor([[2.4371],[8.7851],[4.8822],[1.3283],[1.8363],[5.9220],[6.4880],[6.7299],[3.8554],[5.3370]])

当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。
上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。
例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。
在深度学习框架中实现的内置迭代器效率要高得多,
它可以处理存储在文件中的数据和数据流提供的数据。

初始化模型参数

通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重,
并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2, 1), requires_grad = True)
b = torch.zeros(1, requires_grad = True)

定义模型

定义模型,将模型的输入和参数同模型的输出关联起来。

要计算线性模型的输出,只需计算输入特征 X \mathbf{X} X和模型权重 w \mathbf{w} w的矩阵-向量乘法后加上偏置 b b b
注意,上面的 X w \mathbf{Xw} Xw是一个向量,而 b b b是一个标量。

def linreg(X, w, b):  #@save"""线性回归模型"""return torch.matmul(X, w) + b

定义损失函数

因为需要计算损失函数的梯度,所以我们应该先定义损失函数。
这里我们使用平方损失函数。
在实现中,我们需要将真实值y的形状转换为和预测值y_hat的形状相同。

def squared_loss(y_hat, y):  #@save"""均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。
接下来,朝着减少损失的方向更新我们的参数。

下面的函数实现小批量随机梯度下降更新。
该函数接受模型参数集合、学习速率和批量大小作为输入。每
一步更新的大小由学习速率lr决定。
因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size
来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):  #@save"""小批量随机梯度下降"""with torch.no_grad():for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()

训练

在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。
计算完损失后,我们开始反向传播,存储每个参数的梯度。
最后,我们调用优化算法sgd来更新模型参数。

概括一下,我们将执行以下循环:

  • 初始化参数
  • 重复以下训练,直到完成
    • 计算梯度 g ← ∂ ( w , b ) 1 ∣ B ∣ ∑ i ∈ B l ( x ( i ) , y ( i ) , w , b ) \mathbf{g} \leftarrow \partial_{(\mathbf{w},b)} \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} l(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}, b) g(w,b)B1iBl(x(i),y(i),w,b)
    • 更新参数 ( w , b ) ← ( w , b ) − η g (\mathbf{w}, b) \leftarrow (\mathbf{w}, b) - \eta \mathbf{g} (w,b)(w,b)ηg

在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集,
并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。
这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)  # X和y的小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward()sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数with torch.no_grad():train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
epoch 1, loss 0.041500
epoch 2, loss 0.000147
epoch 3, loss 0.000047
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
w的估计误差: tensor([ 0.0002, -0.0003], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0002], grad_fn=<RsubBackward1>)

线性回归的简洁实现

使用PyTorch框架来实现线性回归模型

生成数据集

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取数据集

调用框架中现有的API来读取数据。将features和labels作为API的参数传递,并通过数据迭代器指定batch_size。此外,布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。

def load_array(data_arrays, batch_size, is_train=True):  #@save"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)

为了验证是否正常工作,读取并打印第一个小批量样本。

使用iter构造Python迭代器,并使用next从迭代器中获取第一项。

next(iter(data_iter))
[tensor([[ 0.3532, -0.6057],[ 1.6997, -1.6114],[ 1.3135,  3.0438],[-1.0064, -1.3555],[ 1.6724,  0.7461],[ 0.3855, -1.5162],[ 0.7502,  0.5924],[ 0.8864, -0.1364],[ 2.0878, -2.4125],[ 0.4963,  1.4179]]),tensor([[ 6.9696],[13.0706],[-3.5134],[ 6.7924],[ 5.0087],[10.1182],[ 3.6684],[ 6.4485],[16.5720],[ 0.3795]])]

定义模型

对于标准深度学习模型,可以使用框架的预定义好的层。

首先定义一个模型变量net,它是一个Sequential类的实例。

Sequential类将多个层串联在一起。当给定输入数据时,Sequential实例将数据传入到第一层,然后将第一层的输出作为第二层的输入,以此类推。

在PyTorch中,全连接层在Linear类中定义。值得注意的是,我们将两个参数传递到nn.Linear中,第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。

# nn是神经网络的缩写
from torch import nnnet = nn.Sequential(nn.Linear(2, 1))

初始化模型参数

在使用net之前,需要初始化模型参数。

深度学习框架通常有预定义的方法来初始化参数。在这里指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采样,偏置参数将初始化为零。

正如在构造nn.Linear时指定输入和输出尺寸一样,现在能直接访问参数以设定它们的初始值。通过net[0]选择网络中的第一个图层,然后使用weight.data和bias.data方法访问参数。还可以使用替换方法normal_和fill_来重写参数值。

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
tensor([0.])

定义损失函数

计算均方误差使用的是MSELoss类,也成为平方 L 2 L_{2} L2范数。

默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

定义优化算法

小批量随机梯度下降算法是一种优化神经网络的标准工具,
PyTorch在optim模块中实现了该算法的许多变种。
当我们(实例化一个SGD实例)时,我们要指定优化的参数
(可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。
小批量随机梯度下降只需要设置lr值,这里设置为0.03。

trainer = torch.optim.SGD(net.parameters(), lr = 0.03)

训练

在每个迭代周期里,将完整遍历一次数据集(train_data),
不停地从中获取一个小批量的输入和相应的标签。
对于每一个小批量,会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失l(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。

为了更好的衡量训练效果,计算每个迭代周期后的损失,并打印它来监控训练过程。

num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X), y)trainer.zero_grad()l.backward()trainer.step()l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {1:f}')
epoch 1, loss 1.000000
epoch 2, loss 1.000000
epoch 3, loss 1.000000

比较生成数据集的真实参数和通过有限数据训练获得的模型参数

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)
w的估计误差: tensor([-0.0001,  0.0005])
b的估计误差: tensor([-0.0008])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/171651.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MQTT客户端MQTT.fx 1.7.1下载、安装和界面介绍

MQTT.fx是一款基于Eclipse Paho&#xff0c;使用Java语言编写的MQTT客户端工具。支持通过Topic订阅和发布消息&#xff0c;用来前期和物理云平台调试非常方便。 1.下载 1.1.访问官方下载地址下载&#xff0c;但是下载不到1.7.1版本 1.2.在连接网页末尾点击立即下载&#xff0c;…

R语言如何实现多元线性回归

输入数据 先把数据用excel保存为csv格式放在”我的文档”文件夹 打开R软件,不用新建,直接写 回归计算 求三个平方和 置信区间(95%)

STL: 容器适配器stack 与 queue

目录 1.容器适配器 1.1 STL标准库中stack和queue的底层结构 1.2 deque的简单介绍(了解) 1.2.1 deque的原理介绍 1.2.2 deque的缺陷 1.2.3 为什么选择deque作为stack和queue的底层默认容器 2. stack的介绍和使用 2.1 stack的介绍 2.2 stack的使用 2.3 利用deque模拟实现…

【算法】FFT-1(递归实现)(不包括IFFT)

FFT 多项式多项式乘法复数及运算导数泰勒公式及展开式欧拉公式单位根 FFTCode IFFT 多项式 我们从课本中可以知道&#xff0c;一个 n − 1 n-1 n−1 次的多项式可以写成 a 0 a 1 x a 2 x 2 a 3 x 3 ⋯ a n − 1 x n − 1 a_{0}a_{1}xa_{2}x^2a_{3}x^3\dotsa_{n-1}x^{n-…

【挑战业余一周拿证】二、在云中计算 - 第 2 节 - Amazon EC2 实例类型

第 2 节 - Amazon EC2 实例类型 如果我们想让企业尽可能高效地运作&#xff0c;那就一定要确保员工的技能组合适合他们的角色&#xff0c;就 像我们的咖啡店有不同类型的员工一样&#xff0c;亚马逊云科技也有不同类型的 EC2 实例。每种实例类型 都归属于一个实例系列&#x…

BUUCTF刷题之路-web-[GXYCTF2019]Ping Ping Ping1

启动环境后&#xff0c;是一个简简单单的页面&#xff1a; 看样子是能够触发远程执行漏洞的。尝试下ping 127.0.0.1&#xff0c;如果有回显说明我们的想法是对的。 最近才学习的nc反弹shell。想着是否能用nc反弹shell的办法。控制服务器然后输出flag呢&#xff1f;于是我测试下…

如何通过nginx进行服务的负载均衡

简单介绍 随着互联网的发展&#xff0c;业务流量越来越大并且业务逻辑也越来越复杂&#xff0c;单台服务器的性能及单点故障问题就凸显出来了&#xff0c;因此需要多台服务器组成应用集群&#xff0c;进行性能的水平扩展以及避免单点故障的出现。应用集群是将同一应用部署到多台…

NAS非接入层协议学习(二)

在无线通信网络中 NAS (Non-Access Stratum)做为非接入层是演进分组系统(或5G核心网)中的一组协议。NAS用于在用户设备(UE)和移动管理实体(MME/AMF)之间传送非无线电信令&#xff0c;以实现NR/LTE/E-UTRAN接入。 NAS在协议栈中是控制面的最高层。 NAS协议分组中可以将其分为两…

美化wordpress复制文章内容弹出版权提示框的源码代码

通过SweetAlert美化的提示框 将下面代码添加到当前主题模板函数functions.php文件最后即可&#xff1a; function zm_copyright_tips() { echo <link rel"stylesheet" type"text/css" rel"external nofollow" target"_blank" href…

hive杂谈

数据仓库是一个面向主题的、集成的、非易失的、随时间变化的&#xff0c;用来支持管理人员决策的数据集合&#xff0c;数据仓库中包含了粒度化的企业数据。 数据仓库的主要特征是&#xff1a;主题性、集成性、非易失性、时变性。 数据仓库的体系结构通常包含4个层次&#xff…

第 373 场 LeetCode 周赛题解

A 循环移位后的矩阵相似检查 模拟 class Solution { public:bool areSimilar(vector<vector<int>> &mat, int k) {int m mat.size(), n mat[0].size();k % n;auto g mat;for (int i 0; i < m; i)if (i & 1)rotate(mat[i].begin(), mat[i].begin() …

Nodejs 第二十章(fs 上)

概述 在 Node.js 中&#xff0c;fs 模块是文件系统模块&#xff08;File System module&#xff09;的缩写&#xff0c;它提供了与文件系统进行交互的各种功能。通过 fs 模块&#xff0c;你可以执行诸如读取文件、写入文件、更改文件权限、创建目录等操作&#xff0c;Node.js …

算法通关村-----字符串冲刺题

最长公共前缀 问题描述 编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀&#xff0c;返回空字符串 “”。详见leetcode14 问题分析 直观上来看&#xff0c;有竖直和水平两种方式&#xff0c;竖直方式是指我们依次比较所有字符串的第一个字符&#xff0c;…

c语言实现10进制转16进制

代码如下&#xff1a; #define _CRT_SECURE_NO_WARNINGS #include <stdio.h>int dectohex(int b, char array[]) {char a[17] { "0123456789ABCDEF" };int c[30] { 0 }, i 0, base 16, j 0;while (b){c[i] b % base;b b / base;}j i;for (i--; i >…

03-《人月神话》巴赫、UML和领域驱动设计伪创新:中译本纠错及联想

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 2001年&#xff0c;我们翻译《人月神话》的时候&#xff0c;由于水平有限&#xff0c;译文中存在不少错误。 这些年&#xff0c;随着阅历的增长&#xff0c;在重读的时候偶尔也会有“…

电商项目高级篇-03 商品上架

商品上架 1、商品上架1.1、设计&#xff1a;宽表设计 1、商品上架 上架的商品才可以在网站展示。 上架的商品需要可以被检索。 1.1、设计&#xff1a;宽表设计 优点&#xff1a;方便检索 缺点&#xff1a;数据冗余 商品数据模型设计&#xff1a; PUT product {"mappi…

【PyQt】QPixmap与numpy.array互转

这里给出QPixmap→numpy.ndarray的两条转换(一个是使用PIL.Image而另一个不用)&#xff0c; 以及numpy.ndarray→QPixmap两条转换(同样也是用不用PIL.Image的区别)。 代码运行结果&#xff1a; from PyQt5.QtCore import QPoint,QRect,Qt from PyQt5.QtWidgets import QLabel …

微信小程序 服务端返回富文本,图片无法显示

场景&#xff1a;   微信小程序开发中&#xff0c;需要从服务端拿取数据渲染到页面上&#xff0c;后台返回的富文本里&#xff0c;图片路径有时是没有带域名前缀的&#xff0c;导致图片无法正常显示。 解决方案&#xff1a;   在富文本返回时&#xff0c;用正则匹配&#…

『OPEN3D』1.8 点云的配准理论

点云的配准是将不同的3D点云对齐成一个完成的点云模型&#xff1b;配准的目标是找到两帧点云之间的相对旋转&#xff08;rotation&#xff09;与平移&#xff08;translation&#xff09;&#xff0c;使得两份点云中有重叠的区域能够完好拼接。 点云配准示例图&#xff08;来自…

JPA 方式实现 RESTful API

除了常见的方式实现 RESTful API&#xff0c;还有一种简单的方式实现 RESTful API&#xff0c;那就是用 JPA 方式。首先介绍一下 JPA&#xff0c;它是 Sun 公司推荐的 JAVA 持久化规范&#xff0c;为了简化 ORM 技术而产生。需要注意的是&#xff0c;他只是一套规范&#xff0c…