【数据结构】树与二叉树(廿六):树删除指定结点及其子树(算法DS)

文章目录

  • 5.3.1 树的存储结构
    • 5. 左儿子右兄弟链接结构
  • 5.3.2 获取结点的算法
    • 1. 获取大儿子、大兄弟结点
    • 2. 搜索给定结点的父亲
    • 3. 搜索指定数据域的结点
    • 4. 删除结点及其左右子树
      • a. 逻辑删除与物理删除
      • b. 算法DST
      • c. 算法解析
      • d. 代码实现
        • 递归释放树
        • 算法DS
      • e. 算法测试
    • 5. 代码整合

5.3.1 树的存储结构

5. 左儿子右兄弟链接结构

【数据结构】树与二叉树(十九):树的存储结构——左儿子右兄弟链接结构(树、森林与二叉树的转化)
  左儿子右兄弟链接结构通过使用每个节点的三个域(FirstChild、Data、NextBrother)来构建一棵树,同时使得树具有二叉树的性质。具体来说,每个节点包含以下信息:

  1. FirstChild: 存放指向该节点的大儿子(最左边的子节点)的指针。这个指针使得我们可以迅速找到一个节点的第一个子节点。
  2. Data: 存放节点的数据。
  3. NextBrother: 存放指向该节点的大兄弟(同一层中右边的兄弟节点)的指针。这个指针使得我们可以在同一层中迅速找到节点的下一个兄弟节点。

  通过这样的结构,整棵树可以用左儿子右兄弟链接结构表示成一棵二叉树。这种表示方式有时候被用于一些特殊的树结构,例如二叉树、二叉树的森林等。这种结构的优点之一是它更紧凑地表示树,而不需要额外的指针来表示兄弟关系。
在这里插入图片描述

   A/|\B C D/ \E   F
A
|
B -- C -- D|E -- F

即:

      A/ B   \C/ \ E   D\F

在这里插入图片描述

5.3.2 获取结点的算法

1. 获取大儿子、大兄弟结点

【数据结构】树与二叉树(二十):树获取大儿子、大兄弟结点的算法(GFC、GNB)

2. 搜索给定结点的父亲

【数据结构】树与二叉树(廿四):树搜索给定结点的父亲(算法FindFather)

3. 搜索指定数据域的结点

【数据结构】树与二叉树(廿五):树搜索指定数据域的结点(算法FindTarget)

4. 删除结点及其左右子树

a. 逻辑删除与物理删除

  • 逻辑删除(Logical Deletion)
    • 逻辑删除通常是指在数据结构中标记某个节点为被删除的状态,而不是真正地从内存中删除它。
  • 物理删除(Physical Deletion)
    • 物理删除是指真正地从内存中释放某个节点及其子树的内存。

b. 算法DST

在这里插入图片描述

c. 算法解析

  1. 检查输入参数t和p是否为空,如果其中任一参数为空,则返回。

  2. 调用FindFather(t, p.result)函数,找到以t为根的树中根为p的子树的父节点

  3. 如果找不到父节点(即result为空),则表示根为p的子树不存在,直接删除节点p并返回。

  4. 如果找到了父节点,算法继续执行,检查父节点的第一个子节点是否为p

    • 如果第一个子节点是p,则将父节点的第一个子节点设置为p的下一个兄弟节点(即FirstChild(result)←NextBrother( p)),然后删除节点p并返回。
    • 如果第一个子节点不是p,则算法使用一个循环找到p的下一个兄弟节点q,将q的下一个兄弟节点设置为p的下一个兄弟节点(即NextBrother(q)←NextBrother( p))。最后,删除节点p并返回。

d. 代码实现

递归释放树
void freeTree(TreeNode* root) {if (root != NULL) {freeTree(root->firstChild);freeTree(root->nextBrother);free(root);}
}
算法DS
void DelSubtree(TreeNode* t, TreeNode* p) {if (t == NULL || p == NULL) {return;}TreeNode* result = NULL;FindFather(t, p, &result);if (result == NULL) {return; // 未找到父亲节点}if (result->firstChild == p) {result->firstChild = p->nextBrother;freeTree(p);return;}TreeNode* q = result->firstChild;while (q != NULL && q->nextBrother != p) {q = q->nextBrother;}if (q != NULL) {q->nextBrother = p->nextBrother;freeTree(p);}
}

e. 算法测试

int main() {// 构建左儿子右兄弟链接结构的树TreeNode* A = createNode('A');TreeNode* B = createNode('B');TreeNode* C = createNode('C');TreeNode* D = createNode('D');TreeNode* E = createNode('E');TreeNode* F = createNode('F');A->firstChild = B;B->nextBrother = C;C->nextBrother = D;C->firstChild = E;E->nextBrother = F;// 要删除的子树的根节点TreeNode* subtreeRoot = F;// 使用算法 DelSubtree 删除子树DelSubtree(A, subtreeRoot);// 输出删除子树后的树结构printf("Tree after deleting subtree rooted at %c:\n", subtreeRoot->data);// 层次遍历算法printf("Level Order: \n");LevelOrder(A);printf("\n");// 释放树节点freeTree(A);return 0;
}
  • 继续采用先前系列文章的树结构
  • 删除指定结点subtreeRoot
  • 层次遍历删除subtreeRoot结点及其子树后的树
  • 释放整棵树
    在这里插入图片描述

5. 代码整合

#include <stdio.h>
#include <stdlib.h>// 定义树节点
typedef struct TreeNode {char data;struct TreeNode* firstChild;struct TreeNode* nextBrother;
} TreeNode;// 创建树节点
TreeNode* createNode(char data) {TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode));if (newNode != NULL) {newNode->data = data;newNode->firstChild = NULL;newNode->nextBrother = NULL;}return newNode;
}// 释放树节点及其子树
void freeTree(TreeNode* root) {if (root != NULL) {freeTree(root->firstChild);freeTree(root->nextBrother);free(root);}
}// 算法GFC:获取大儿子结点
TreeNode* getFirstChild(TreeNode* p) {if (p != NULL && p->firstChild != NULL) {return p->firstChild;}return NULL;
}// 算法GNB:获取下一个兄弟结点
TreeNode* getNextBrother(TreeNode* p) {if (p != NULL && p->nextBrother != NULL) {return p->nextBrother;}return NULL;
}// 队列结构
typedef struct QueueNode {TreeNode* treeNode;struct QueueNode* next;
} QueueNode;typedef struct {QueueNode* front;QueueNode* rear;
} Queue;// 初始化队列
void initQueue(Queue* q) {q->front = NULL;q->rear = NULL;
}// 入队列
void enqueue(Queue* q, TreeNode* treeNode) {QueueNode* newNode = (QueueNode*)malloc(sizeof(QueueNode));newNode->treeNode = treeNode;newNode->next = NULL;if (q->rear == NULL) {q->front = newNode;q->rear = newNode;} else {q->rear->next = newNode;q->rear = newNode;}
}// 出队列
TreeNode* dequeue(Queue* q) {if (q->front == NULL) {return NULL; // 队列为空}TreeNode* treeNode = q->front->treeNode;QueueNode* temp = q->front;q->front = q->front->next;free(temp);if (q->front == NULL) {q->rear = NULL; // 队列为空}return treeNode;
}// 层次遍历的算法
void LevelOrder(TreeNode* root) {if (root == NULL) {return;}Queue queue;initQueue(&queue);enqueue(&queue, root);while (queue.front != NULL) {TreeNode* p = dequeue(&queue);while (p != NULL) {// 访问当前结点printf("%c ", p->data);// 将大儿子结点入队列if (getFirstChild(p) != NULL) {enqueue(&queue, getFirstChild(p));}// 移动到下一个兄弟结点p = getNextBrother(p);}}
}// 算法 FindFather
void FindFather(TreeNode* t, TreeNode* p, TreeNode** result) {*result = NULL;if (t == NULL || p == NULL || p == t) {return;}TreeNode* q = t->firstChild;while (q != NULL) {if (q == p) {*result = t;return;}FindFather(q, p, result);if (*result != NULL) {return;}q = q->nextBrother;}
}// 算法 DelSubtree
void DelSubtree(TreeNode* t, TreeNode* p) {if (t == NULL || p == NULL) {return;}TreeNode* result = NULL;FindFather(t, p, &result);if (result == NULL) {return; // 未找到父亲节点}if (result->firstChild == p) {result->firstChild = p->nextBrother;freeTree(p);return;}TreeNode* q = result->firstChild;while (q != NULL && q->nextBrother != p) {q = q->nextBrother;}if (q != NULL) {q->nextBrother = p->nextBrother;freeTree(p);}
}int main() {// 构建左儿子右兄弟链接结构的树TreeNode* A = createNode('A');TreeNode* B = createNode('B');TreeNode* C = createNode('C');TreeNode* D = createNode('D');TreeNode* E = createNode('E');TreeNode* F = createNode('F');A->firstChild = B;B->nextBrother = C;C->nextBrother = D;C->firstChild = E;E->nextBrother = F;// 要删除的子树的根节点TreeNode* subtreeRoot = F;// 使用算法 DelSubtree 删除子树DelSubtree(A, subtreeRoot);// 输出删除子树后的树结构printf("Tree after deleting subtree rooted at %c:\n", subtreeRoot->data);// 层次遍历算法printf("Level Order: \n");LevelOrder(A);printf("\n");// 释放树节点freeTree(A);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/171319.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PPT 遇到问题总结(修改页码统计)

PPT常见问题 1. 修改页码自动计数 1. 修改页码自动计数 点击 视图——>幻灯片母版——>下翻找到计数页直接修改——>关闭母版视图

vue+springboot读取git的markdown文件并展示

前言 最近&#xff0c;在研究一个如何将我们git项目的MARKDOWN文档获取到&#xff0c;并且可以展示到界面通过检索查到&#xff0c;于是经过几天的摸索&#xff0c;成功的研究了出来 本次前端vue使用的是Markdown-it Markdown-it 是一个用于解析和渲染 Markdown 标记语言的 …

Cache学习(3):Cache地址映射(直接映射缓存组相连缓存全相连缓存)

1 Cache的与存储地址的映射 以一个Cache Size 为 128 Bytes 并且Cache Line是 16 Bytes的Cache为例。首先把这个Cache想象成一个数组&#xff0c;数组总共8个元素&#xff0c;每个元素大小是 16 Bytes&#xff0c;如下图&#xff1a; 现在考虑一个问题&#xff0c;CPU从0x0654…

城市生命线丨桥梁结构健康监测系统的作用

在城市建设当中&#xff0c;有非常多的城市基本建设&#xff0c;建设当中&#xff0c;桥梁作为不可忽视的一环&#xff0c;也需要有很多桥梁建设的智能监测系统&#xff0c;在这个桥梁结构健康监测系统中&#xff0c;桥梁的各个数值都能被监测得到。 WITBEE万宾使用城市生命线智…

Linux内核--内存管理(十三)vmalloc的实现

一、引言 二、vmalloc ------>2.1、vmalloc ------>2.2、对称多处理 SMP(Symmetric MultiProcessing) ------>2.3、非均衡访存模型 NUMA(Non-Uniform Memory Access) 三、数据结构 ------>3.1、vm_struct ------>3.2、vmap_area 四、vmalloc初始化 ---…

高并发内存池

1.什么是内存池 内存池动态内存分配与管理技术&#xff0c;对于程序员来说&#xff0c;通常情况下&#xff0c;动态申请内存需要使用new,delete,malloc,free这些API来申请&#xff0c;这样导致的后果是&#xff0c;当程序长时间运行之后&#xff0c;由于程序运行时所申请的内存…

探索 Rollup:简化你的前端构建流程

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Linux 命令vim(编辑器)

(一)vim编辑器的介绍 vim是文件编辑器&#xff0c;是vi的升级版本&#xff0c;兼容vi的所有指令&#xff0c;同时做了优化和延伸。vim有多种模式&#xff0c;其中常用的模式有命令模式、插入模式、末行模式&#xff1a;。 (二)vim编辑器基本操作 1 进入vim编辑文件 1 vim …

排序算法:归并排序、快速排序、堆排序

归并排序 要将一个数组排序&#xff0c;可以先将它分成两半分别排序&#xff0c;然后再将结果合并&#xff08;归并&#xff09;起来。这里的分成的两半&#xff0c;每部分可以使用其他排序算法&#xff0c;也可以仍然使用归并排序&#xff08;递归&#xff09;。 我看《算法》…

day64

跨域请求伪造 一、csrf跨站请求伪造详解 CSRF&#xff08;Cross-Site Request Forgery&#xff09;跨站请求伪造是一种常见的网络攻击方式。攻击者通过诱导受害者访问恶意网站或点击恶意链接 将恶意请求发送到目标网站上利用受害者在目标网站中已登录的身份来执行某些操作从而…

电源的纹波

电源纹波的产生 我们常见的电源有线性电源和开关电源&#xff0c;它们输出的直流电压是由交流电压经整流、滤波、稳压后得到的。由于滤波不干净&#xff0c;直流电平之上就会附着包含周期性与随机性成分的杂波信号&#xff0c;这就产生了纹波。 在额定输出电压、电流的情况下…

【开题报告】基于SpringBoot的高端美发产品商城的设计与实现

1.研究背景 随着人们对美容、护肤和个人形象的重视&#xff0c;高端美发产品在市场上的需求越来越大。传统的线下销售方式存在一些问题&#xff0c;如地域限制、库存管理困难等&#xff0c;不能满足现代消费者的需求。因此&#xff0c;建立一个在线商城平台&#xff0c;可以让…

leetCode 1080.根到叶路径上的不足节点 + 递归 + 图解

给你二叉树的根节点 root 和一个整数 limit &#xff0c;请你同时删除树中所有 不足节点 &#xff0c;并返回最终二叉树的根节点。假如通过节点 node 的每种可能的 “根-叶” 路径上值的总和全都小于给定的 limit&#xff0c;则该节点被称之为 不足节点 &#xff0c;需要被删除…

SQL Injection (Blind)`

SQL Injection (Blind) SQL Injection (Blind) SQL盲注&#xff0c;是一种特殊类型的SQL注入攻击&#xff0c;它的特点是无法直接从页面上看到注入语句的执行结果。在这种情况下&#xff0c;需要利用一些方法进行判断或者尝试&#xff0c;这个过程称之为盲注。 盲注的主要形式有…

Python之内置函数和模块

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

基于单片机的可升降助眠婴儿床(论文+源码)

1.系统设计 本课题为基于单片机的可升降助眠婴儿床系统&#xff0c;在设计目标上确定如下&#xff1a; 1. 可以实现婴儿床的升降&#xff0c;摇床功能控制&#xff1b; 2. 具有音乐播放功能&#xff0c;并且有多首曲目&#xff1b; 3. 用户可以通过按键或者红外遥控&#x…

使用fetch封装get与post方法

网上看了一些对fetch的封装&#xff0c;有点看不伶清。如在request中配置timeout与responseType字段等&#xff0c;在文档上找根本找不到。于是自己封装个简单版的fetch&#xff0c;方便拿到项目中改造一下就可以使用。 注意点 使用fetch时会产生跨域问题&#xff0c;需服务端…

Runloop解析

RunLoop 前言 ​ 本文介绍RunLoop的概念&#xff0c;并使用swift和Objective-C来描述RunLoop机制。 简介 ​ RunLoop——运行循环&#xff08;死循环&#xff09;&#xff0c;它提供了一个事件循环机制在程序运行过程中处理各种事件&#xff0c;例如用户交互、网络请求、定…

用JAVA编程解决数位和相等问题

如果一个正整数转化成二进制与转换成八进制后所有数位的数字之和相等&#xff0c;则称为数位和相等的数。   前几个数位和相等的正整数为 1, 8, 9, 64, ……   请问第 23 个数位和相等的正整数是多少&#xff1f;用JAVA编程解决 可以通过编程计算第 23 个数位和相等的正整…

Xshell连接VMware虚拟机中的CentOS

Xshell连接VMware虚拟机中的CentOShttps://www.cnblogs.com/niuben/p/13157291.html 步骤&#xff1a; 1. 检查Linux虚拟机的网络连接模式&#xff0c;确保它是NAT模式。&#xff08;由于只在本机进行连接&#xff0c;所以没有选择桥接模式。当然&#xff0c;桥接模式的配置会…