NoSQL--------- Redis配置与优化

目录

一、关系型数据库与非关系型数据库

1.1关系型数据库

1.2非关系型数据库Nosql

 1.3关系与非关系区别

 1.4非关系产生的背景

 1.5总结

 二、Redis介绍

2.1Redis简介

2.3Redis优点

2.4 Redis为什么这么快?

三、Redis安装部署

3.1安装redis

3.2测试redis

3.3redis-benchmark 测试工具

3.4Redis 数据库常用命令

四、Redis高可用

五、Redis 持久化

5.1RDB 持久化

(1)手动触发

(2)自动触发

(3)  执行流程

5.2AOF 持久化 

5.2.1. 开启AOF

5.3  RDB和AOF的优缺点

5.3.1RDB持久化

5.3.2AOF持久化

六、Redis主从复制


一、关系型数据库与非关系型数据库

1.1关系型数据库

关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作.

主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2、PostgreSQL 等。

1.2非关系型数据库Nosql

NoSQL(NoSQL = Not Only SQL ),意思是“不仅仅是 SQL”,是非关系型数据库的总称。

除了主流的关系型数据库外的数据库,都认为是非关系型。
不需要预先建库建表定义数据存储表结构,每条记录可以有不同的数据类型和字段个数(比如微信群聊里的文字、图片、视频、音乐等)。
主流的 NoSQL 数据库有 Redis、MongBD、Hbase、Memcached 等。

 1.3关系与非关系区别

(1)数据存储方式不同
关系型数据天然就是表格式的。数据表可以彼此关联协作存储,也很容易提取数据。
非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。

(2)扩展方式不同
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多克服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限个表,这都需要通过提高计算机性能来。
而NoSQL数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。

(3)对事务性的支持不同
如果计数据操作需要高事务性或者复杂数据查询需要控制执行划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。

 1.4非关系产生的背景

(1)High performance——对数据库高并发读写需求
(2)Huge Storage——对海量数据高效存储与访问需求
(3)High Scalability && High Availability——对数据库高可扩展性与高可用性需求

 1.5总结

非关系数据库
1、数据保存在缓存中,利于读取速度/查询数据
2、架构位置灵活
3、分布式、扩展性高

关系数据库
1、安全性高(持久化)
2、事务处理能力强
3、任务控制能力强
4、可以做日志备份、恢复、容灾的能力更强一点

 二、Redis介绍

2.1Redis简介

Redis(远程字典服务器) 是一个开源的、使用 C 语言编写的 NoSQL 数据库。
Redis 基于内存运行并支持持久化,采用key-value(键值对)的存储形式,是目前分布式架构中不可或缺的一环。

Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。即:在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若CPU资源比较紧张,采用单进程即可。

2.3Redis优点

(1)具有极高的数据读写速度:数据读取的速度最高可达到 110000 次/s,数据写入速度最高可达到 81000 次/s。
(2)支持丰富的数据类型:支持 key-value(键值)、Strings(字符串)、Lists(列表)、Hashes(哈希散列值)、Sets(有序) 及 Sorted Sets(无序排序) 等数据类型操作。
(3)支持数据的持久化:可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
(4)原子性:Redis 所有操作都是原子性的。
(5)支持数据备份:即 master-salve 模式的数据备份。

2.4 Redis为什么这么快?

1、Redis是一款纯内存结构,避免了磁盘I/o等耗时操作。
2、Redis命令处理的核心模块为单线程,减少了锁竞争,以及频繁创建线程和销毁线程的代价,减少了线程上下文切换的消耗。
3、采用了 I/O 多路复用机制,大大提升了并发效率。

注:在 Redis 6.0 中新增加的多线程也只是针对处理网络请求过程采用了多线性,而**数据的读写命令,仍然是单线程处理的。

三、Redis安装部署

3.1安装redis

systemctl stop firewalld
setenforce 0yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。#执行软件包提供的 install_server.sh 脚本文件设置 Redis 服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
......					#一直回车Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server  	#需要手动修改为 /usr/local/redis/bin/redis-server ,注意要一次性正确输入Selected config:
Port           : 6379								#默认侦听端口为6379
Config file    : /etc/redis/6379.conf				#配置文件路径
Log file       : /var/log/redis_6379.log			#日志文件路径
Data dir       : /var/lib/redis/6379				#数据文件路径
Executable     : /usr/local/redis/bin/redis-server	#可执行文件路径Cli Executable : /usr/local/bin/redis-cli			#客户端命令工具#把redis的可执行程序文件放入路径环境变量的目录中便于系统识别
ln -s /usr/local/redis/bin/* /usr/local/bin/#当 install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认监听端口为 6379
netstat -natp | grep redis#Redis 服务控制
/etc/init.d/redis_6379 stop				#停止
/etc/init.d/redis_6379 start			#启动
/etc/init.d/redis_6379 restart			#重启
/etc/init.d/redis_6379 status			#状态#修改配置 /etc/redis/6379.conf 参数
vim /etc/redis/6379.conf
bind 127.0.0.1 192.168.10.23				#70行,添加 监听的主机地址
port 6379									#93行,Redis默认的监听端口
daemonize yes								#137行,启用守护进程
pidfile /var/run/redis_6379.pid				#159行,指定 PID 文件
loglevel notice								#167行,日志级别
logfile /var/log/redis_6379.log				#172行,指定日志文件/etc/init.d/redis_6379 restart

3.2测试redis

redis-cli -h 【ip】 -p 【端口号】

3.3redis-benchmark 测试工具

redis-benchmark 是官方自带的 Redis 性能测试工具,可以有效的测试 Redis 服务的性能。
基本的测试语法:redis-benchmark [选项] [选项值]。

-h :指定服务器主机名。
-p :指定服务器端口。
-s :指定服务器 socket
-c :指定并发连接数。 
-n :指定请求数。
-d :以字节的形式指定 SET/GET 值的数据大小。
-k :1=keep alive 0=reconnect 。
-r :SET/GET/INCR 使用随机 key, SADD 使用随机值。
-P :通过管道传输<numreq>请求。
-q :强制退出 redis。仅显示 query/sec 值。
--csv :以 CSV 格式输出。
-l :生成循环,永久执行测试。
-t :仅运行以逗号分隔的测试命令列表。
-I :Idle 模式。仅打开 N 个 idle 连接并等待。
#向 IP 地址为 192.168.10.23、端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能
redis-benchmark -h 192.168.10.23 -p 6379 -c 100 -n 100000#测试存取大小为 100 字节的数据包的性能
redis-benchmark -h 192.168.10.161 -p 6379 -q -d 100#测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能
redis-benchmark -t set,lpush -n 100000 -q

3.4Redis 数据库常用命令

set:存放数据,命令格式为 set key value
get:获取数据,命令格式为 get key

127.0.0.1:6379> set teacher zhangsan
OK
127.0.0.1:6379> get teacher
"zhangsan"# keys 命令可以取符合规、?等选项来使用。
127.0.0.1:6379> set k1 1则的键值列表,通常情况可以结合*
127.0.0.1:6379> set k2 2
127.0.0.1:6379> set k3 3
127.0.0.1:6379> set v1 4
127.0.0.1:6379> set v5 5
127.0.0.1:6379> set v22 5127.0.0.1:6379> KEYS *				#查看当前数据库中所有键127.0.0.1:6379> KEYS v*				#查看当前数据库中以 v 开头的数据127.0.0.1:6379> KEYS v?				#查看当前数据库中以 v 开头后面包含任意一位的数据127.0.0.1:6379> KEYS v??				#查看当前数据库中以 v 开头 v 开头后面包含任意两位的数据
# exists 命令可以判断键值是否存在。
127.0.0.1:6379> exists teacher		#判断 teacher 键是否存在
(integer) 1							# 1 表示 teacher 键是存在
127.0.0.1:6379> exists tea
(integer) 0							# 0 表示 tea 键不存在# del 命令可以删除当前数据库的指定 key。
127.0.0.1:6379> keys *
127.0.0.1:6379> del v5
127.0.0.1:6379> get v5# type 命令可以获取 key 对应的 value 值类型。
127.0.0.1:6379> type k1
string# rename 命令是对已有 key 进行重命名。(覆盖)
命令格式:rename 源key 目标key
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。在实际使用过程中,建议先用 exists 命令查看目标 key 是否存在,然后再决定是否执行 rename 命令,以避免覆盖重要数据。127.0.0.1:6379> keys v*
1) "v1"
2) "v22"
127.0.0.1:6379> rename v22 v2
OK
127.0.0.1:6379> keys v*
1) "v1"
2) "v2"
127.0.0.1:6379> get v1
"4"
127.0.0.1:6379> get v2
"5"
127.0.0.1:6379> rename v1 v2
OK
127.0.0.1:6379> get v1
(nil)
127.0.0.1:6379> get v2
"4"# renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)
命令格式:renamenx 源key 目标key
127.0.0.1:6379> keys *
127.0.0.1:6379> get teacher
"zhangsan"
127.0.0.1:6379> get v2
"4"
127.0.0.1:6379> renamenx v2 teacher
(integer) 0
127.0.0.1:6379> keys *
127.0.0.1:6379> get teacher
"zhangsan"
127.0.0.1:6379> get v2
"4"# dbsize 命令的作用是查看当前数据库中 key 的数目。
127.0.0.1:6379> dbsize#使用config set requirepass yourpassword命令设置密码
127.0.0.1:6379> config set requirepass 123456#使用config get requirepass命令查看密码(一旦设置密码,必须先验证通过密码,否则所有操作不可用)
127.0.0.1:6379> auth 123456
127.0.0.1:6379> config get requirepass---- Redis 多数据库常用命令 ----
Redis 支持多数据库,Redis 默认情况下包含 16 个数据库,数据库名称是用数字 0-15 来依次命名的。
多数据库相互独立,互不干扰。#多数据库间切换
命令格式:select 序号
使用 redis-cli 连接 Redis 数据库后,默认使用的是序号为 0 的数据库。127.0.0.1:6379> select 10			#切换至序号为 10 的数据库127.0.0.1:6379[10]> select 15		#切换至序号为 15 的数据库127.0.0.1:6379[15]> select 0			#切换至序号为 0 的数据库#多数据库间移动数据
格式:move 键值 序号127.0.0.1:6379> set k1 100
OK
127.0.0.1:6379> get k1
"100"
127.0.0.1:6379> select 1
OK
127.0.0.1:6379[1]> get k1
(nil)
127.0.0.1:6379[1]> select 0			#切换至目标数据库 0
OK
127.0.0.1:6379> get k1				#查看目标数据是否存在
"100"
127.0.0.1:6379> move k1 1			#将数据库 0 中 k1 移动到数据库 1 中
(integer) 1
127.0.0.1:6379> select 1				#切换至目标数据库 1
OK
127.0.0.1:6379[1]> get k1			#查看被移动数据
"100"
127.0.0.1:6379[1]> select 0
OK
127.0.0.1:6379> get k1				#在数据库 0 中无法查看到 k1 的值
(nil)#清除数据库内数据
FLUSHDB :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!

四、Redis高可用

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。
●持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
●Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

五、Redis 持久化

持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

Redis 提供两种方式进行持久化:
●RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
●AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

5.1RDB 持久化

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

(1)手动触发

save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

(2)自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。

vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes

(3)  执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息

5.2AOF 持久化 

DB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

5.2.1. 开启AOF

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes/etc/init.d/redis_6379 restart

5.3  RDB和AOF的优缺点

5.3.1RDB持久化

优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

5.3.2AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。
对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。
AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

六、Redis主从复制

systemctl stop firewalld
setenforce 0-----安装 Redis-----
yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/wget -p /opt http://download.redis.io/releases/redis-5.0.9.tar.gz
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis installcd /opt/redis-5.0.7/utils
./install_server.sh
......
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server  	ln -s /usr/local/redis/bin/* /usr/local/bin/-----修改 Redis 配置文件(Master节点操作)-----
vim /etc/redis/6379.conf   redis.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart-----修改 Redis 配置文件(Slave节点操作)-----
vim /etc/redis/6379.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录		#288行,指定要同步的Master节点IP和端口
replicaof 192.168.10.22 6379
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart-----验证主从效果-----
在Master节点上看日志:
tail -f /var/log/redis_6379.log 在Master节点上验证从节点:
redis-cli info replication

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/17051.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文简述】DIP: Deep Inverse Patchmatch for High-Resolution Optical Flow(CVPR 2022)

一、论文简述 1. 第一作者&#xff1a;Rui Li 2. 发表年份&#xff1a;2023 3. 发表期刊&#xff1a;CVPR 4. 关键词&#xff1a;光流、深度学习、PatchMatch、局部搜索 5. 探索动机&#xff1a;对于深度学习来说&#xff0c;除了准确性之外&#xff0c;性能和内存也是一个…

基于深度学习的CCPD车牌检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要&#xff1a;基于CCPD数据集的高精度车牌检测系统可用于日常生活中检测与定位车牌目标&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的车牌目标检测识别&#xff0c;另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集…

回归预测 | MATLAB实现GRNN广义回归神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GRNN广义回归神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GRNN广义回归神经网络多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计参考资料效果一览 基本介绍 MATLAB实现GRNN广义回归神经网络多输入单输出回归…

centos动态内网IP如何改静态

要将CentOS从动态内网IP改为静态IP&#xff0c;需要按照以下步骤进行操作&#xff1a; 打开终端并以root用户身份登录。 编辑网络配置文件。在终端中输入以下命令&#xff1a; vi /etc/sysconfig/network-scripts/ifcfg-eth0 这个命令将打开eth0配置文件。如果您的网络接口…

GitLab备份升级

数据备份(默认的备份目录在/var/opt/gitlab/backups/下&#xff0c;生成一个以时间节点命名的tar包。) gitlab-rake gitlab:backup:create新建repo源&#xff0c;升级新版本的gitlab vim /etc/yum.repos.d/gitlab-ce.repo [gitlab-ce] namegitlab-ce baseurlhttps://mirrors.…

JavaScript将一层级对象数组转为children嵌套的三层级树状对象数组(多级树状分类)

有时候后端返回的数据不适合前端,我们就需要进行转换,比如我想用elementUI的级联选择器,而这个组件对数据格式有要求,本篇文章将介绍如何将一层级对象数组数据格式转为三层级嵌套children数组,JavaScript、Vue、小程序等都适用,使用情景为多级分类,嵌套数据 情况1:原数…

解决el-table打印时数据重复显示

1.表格数据比较多加了横向滚动和竖向滚动&#xff0c;导致打印出问题 主要原因是fixed导致&#xff0c;但是又必须得滚动和打印 方法如下&#xff1a; 1. 2. is_fixed: true,//data中定义初始值 3.打印时设置为false,记得要改回true if (key 2) { this.is_fixed false //打…

虹科活动 | 走进宇通客车-汽车新供应链技术展精彩回顾

引言 7月27日&#xff0c;走进宇通客车-汽车新供应链技术展于宇通研发中心成功举办&#xff0c;本次展会中虹科为大家带来了一体化车载天线与车辆GNSS仿真测试方案&#xff0c;感谢您前来探讨与交流&#xff01; 精彩产品一览 车辆GNSS仿真测试方案 虹科高性能GNSS模拟器具有灵…

Eureka 学习笔记3:EurekaHttpClient

版本 awsVersion ‘1.11.277’ EurekaTransport 用于客户端和服务端之间进行通信&#xff0c;封装了以下接口的实现&#xff1a; ClosableResolver 接口实现TransportClientFactory 接口实现EurekaHttpClient 接口实现及其对应的 EurekaHttpClientFactory 接口实现 private …

Golang之路---01 Golang VS Code创建项目

Golang VS Code创建项目 代码组织 Golang使用包和模块来组织代码&#xff0c;包对应到文件系统就是文件夹&#xff0c;模块就是xxx.go的go源文件。一个包中会有多个模块&#xff0c;或者多个子包。 早期使用的是gopath来管理项目&#xff0c;不方便&#xff0c;比较麻烦&…

电子技术的发展

本资料仅用于学习和讨论如有侵权请反馈 1.1 第一台只能存储640M 什么是模拟信号: 2.1 把声波转化为电信号 2.2 微音器输出的某一段信号的波形 3、最简单有个蜂鸣器,再好一点有个喇叭 4、人说话的声音是个很复杂的声音 5、嵌入式实时操作系统: 6、结构到函数 6.1 学习环境…

深度学习,神经网络介绍

目录 1.神经网络的整体构架 2.神经网络架构细节 3.正则化与激活函数 4.神经网络过拟合解决方法 1.神经网络的整体构架 ConvNetJS demo: Classify toy 2D data 我们可以看看这个神经网络的网站&#xff0c;可以用来学习。 神经网络的整体构架如下1&#xff1a; 感知器&…

二叉树的前,中,后序的非递归实现(c++)

前言 对于二叉树来说&#xff0c;遍历它有多种方式&#xff0c;其中递归遍历是比较简单的&#xff0c;但是非递归的实现就有一定的难度&#xff0c;在这里介绍一种非递归实现二叉树遍历的方式。 1.前序遍历 1.1思路 其实对于二叉树的非递归实现&#xff0c;实际上就是用代码来…

Android HTTP使用(详细版)

前言 在面试过程中,HTTP 被提问的概率还是比较高的。 小林我搜集了 5 大类 HTTP 面试常问的题目,同时这 5 大类题跟 HTTP 的发展和演变关联性是比较大的,通过问答 + 图解的形式由浅入深的方式帮助大家进一步的学习和理解 HTTP 协议。 HTTP 基本概念 Get 与 Post HTTP 特性…

Linux系统使用(超详细,暑假弯道超车!!)

目录 Linux操作系统简介 Linux和windows区别 Linux常见命令 Linux目录结构 Linux命令提示符 常用命令 ls cd pwd touch cat echo mkdir rm cp mv vim vim的基本使用 grep netstat Linux面试题 Linux操作系统简介 Linux操作系统是和windows操作系统是并列的关系。只不过只…

GitHub上怎么寻找项目?

前言 下面由我精心整理的关于github项目资源搜索的一些方法&#xff0c;这些方法可以帮助你更快更精确的搜寻到你需要的符合你要求的项目。 写文章不易&#xff0c;如果这一篇问文章对你有帮助&#xff0c;求点赞求收藏~ 好&#xff0c;下面我们直接进入正题——> 首先我…

90%的测试工程师是这样使用Postman做接口测试的

一&#xff1a;接口测试前准备 接口测试是基于协议的功能黑盒测试&#xff0c;在进行接口测试之前&#xff0c;我们要了解接口的信息&#xff0c;然后才知道怎么来测试一个接口&#xff0c;如何完整的校验接口的响应值。 那么问题来了&#xff0c;那接口信息从哪里获取呢&…

uniapp,vue3路由传递接收参数

官网vue2升vue3的教程中&#xff0c;演示了如何使用onLoad&#xff0c;记得把官网所有内容都看一遍&#xff01;&#xff01;&#xff01; 传递对象参数 uni.navigateTo({url: /pages/login/code/code?data JSON.stringify({limit: 6, iphone: loginForm.username, }), });…

Oracle ADG Snapshot Standby体验

本文参考了OBE文章Using Snapshot Standby Snapshot Standby的概念 参见这里。 A snapshot standby database is a fully updatable standby database. It receives and archives redo data from a primary database, but does not apply it. Redo data received from the pr…

选择排序算法

选择排序 算法说明与代码实现&#xff1a; 以下是使用Go语言实现的选择排序算法示例代码&#xff1a; package mainimport "fmt"func selectionSort(arr []int) {n : len(arr)for i : 0; i < n-1; i {minIndex : ifor j : i 1; j < n; j {if arr[j] < a…