基于深度学习的CCPD车牌检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于CCPD数据集的高精度车牌检测系统可用于日常生活中检测与定位车牌目标,利用深度学习算法可实现图片、视频、摄像头等方式的车牌目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本车牌子检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度车牌检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。
在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的CCPD车牌数据集标注了车牌这一个类别,数据集总计313518张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的车牌检测数据集包含训练集248610张图片,验证集58446张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的CCPD车牌数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对车牌数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/17049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

回归预测 | MATLAB实现GRNN广义回归神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GRNN广义回归神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GRNN广义回归神经网络多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计参考资料效果一览 基本介绍 MATLAB实现GRNN广义回归神经网络多输入单输出回归…

GitLab备份升级

数据备份(默认的备份目录在/var/opt/gitlab/backups/下,生成一个以时间节点命名的tar包。) gitlab-rake gitlab:backup:create新建repo源,升级新版本的gitlab vim /etc/yum.repos.d/gitlab-ce.repo [gitlab-ce] namegitlab-ce baseurlhttps://mirrors.…

解决el-table打印时数据重复显示

1.表格数据比较多加了横向滚动和竖向滚动,导致打印出问题 主要原因是fixed导致,但是又必须得滚动和打印 方法如下: 1. 2. is_fixed: true,//data中定义初始值 3.打印时设置为false,记得要改回true if (key 2) { this.is_fixed false //打…

虹科活动 | 走进宇通客车-汽车新供应链技术展精彩回顾

引言 7月27日,走进宇通客车-汽车新供应链技术展于宇通研发中心成功举办,本次展会中虹科为大家带来了一体化车载天线与车辆GNSS仿真测试方案,感谢您前来探讨与交流! 精彩产品一览 车辆GNSS仿真测试方案 虹科高性能GNSS模拟器具有灵…

Eureka 学习笔记3:EurekaHttpClient

版本 awsVersion ‘1.11.277’ EurekaTransport 用于客户端和服务端之间进行通信,封装了以下接口的实现: ClosableResolver 接口实现TransportClientFactory 接口实现EurekaHttpClient 接口实现及其对应的 EurekaHttpClientFactory 接口实现 private …

Golang之路---01 Golang VS Code创建项目

Golang VS Code创建项目 代码组织 Golang使用包和模块来组织代码,包对应到文件系统就是文件夹,模块就是xxx.go的go源文件。一个包中会有多个模块,或者多个子包。 早期使用的是gopath来管理项目,不方便,比较麻烦&…

电子技术的发展

本资料仅用于学习和讨论如有侵权请反馈 1.1 第一台只能存储640M 什么是模拟信号: 2.1 把声波转化为电信号 2.2 微音器输出的某一段信号的波形 3、最简单有个蜂鸣器,再好一点有个喇叭 4、人说话的声音是个很复杂的声音 5、嵌入式实时操作系统: 6、结构到函数 6.1 学习环境…

深度学习,神经网络介绍

目录 1.神经网络的整体构架 2.神经网络架构细节 3.正则化与激活函数 4.神经网络过拟合解决方法 1.神经网络的整体构架 ConvNetJS demo: Classify toy 2D data 我们可以看看这个神经网络的网站,可以用来学习。 神经网络的整体构架如下1: 感知器&…

二叉树的前,中,后序的非递归实现(c++)

前言 对于二叉树来说,遍历它有多种方式,其中递归遍历是比较简单的,但是非递归的实现就有一定的难度,在这里介绍一种非递归实现二叉树遍历的方式。 1.前序遍历 1.1思路 其实对于二叉树的非递归实现,实际上就是用代码来…

Android HTTP使用(详细版)

前言 在面试过程中,HTTP 被提问的概率还是比较高的。 小林我搜集了 5 大类 HTTP 面试常问的题目,同时这 5 大类题跟 HTTP 的发展和演变关联性是比较大的,通过问答 + 图解的形式由浅入深的方式帮助大家进一步的学习和理解 HTTP 协议。 HTTP 基本概念 Get 与 Post HTTP 特性…

Linux系统使用(超详细,暑假弯道超车!!)

目录 Linux操作系统简介 Linux和windows区别 Linux常见命令 Linux目录结构 Linux命令提示符 常用命令 ls cd pwd touch cat echo mkdir rm cp mv vim vim的基本使用 grep netstat Linux面试题 Linux操作系统简介 Linux操作系统是和windows操作系统是并列的关系。只不过只…

GitHub上怎么寻找项目?

前言 下面由我精心整理的关于github项目资源搜索的一些方法,这些方法可以帮助你更快更精确的搜寻到你需要的符合你要求的项目。 写文章不易,如果这一篇问文章对你有帮助,求点赞求收藏~ 好,下面我们直接进入正题——> 首先我…

90%的测试工程师是这样使用Postman做接口测试的

一:接口测试前准备 接口测试是基于协议的功能黑盒测试,在进行接口测试之前,我们要了解接口的信息,然后才知道怎么来测试一个接口,如何完整的校验接口的响应值。 那么问题来了,那接口信息从哪里获取呢&…

选择排序算法

选择排序 算法说明与代码实现&#xff1a; 以下是使用Go语言实现的选择排序算法示例代码&#xff1a; package mainimport "fmt"func selectionSort(arr []int) {n : len(arr)for i : 0; i < n-1; i {minIndex : ifor j : i 1; j < n; j {if arr[j] < a…

杨辉三角,给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。

题记&#xff1a; 给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]] 示例 2: 输入: numRows 1 输出: …

Jenkins通过OpenSSH发布WinServer2016

上一篇文章> Jenkins集成SonarQube代码质量检测 一、实验环境 jenkins环境 jenkins入门与安装 容器为docker 主机IP系统版本jenkins10.10.10.10rhel7.5 二、OpenSSH安装 1、下载 官网地址&#xff1a;https://learn.microsoft.com/zh-cn/windows-server/administration/op…

JavaWeb教程笔记

JavaWeb Java Web 1、基本概念 1.1、前言 web开发&#xff1a; web&#xff0c;网页的意思 &#xff0c; www.baidu.com静态web html&#xff0c;css提供给所有人看的数据始终不会发生变化&#xff01; 动态web 淘宝&#xff0c;几乎是所有的网站&#xff1b;提供给所有人…

综合能源系统(5)——综合能源系统优化控制技术

综合能源系统关键技术与典型案例  何泽家&#xff0c;李德智主编 综合能源系统优化控制技术是打破原有各能源供用系统单独规划、单独设计和独立运行的既有模式&#xff0c;实现多能协同互补和综合能源系统稳定运行的关键技术&#xff0c;以实现能源高效利用与可再生能源消纳为…

3ds Max建模教程:模拟布料拖拽撕裂和用剑撕裂两种效果

推荐&#xff1a; NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 拖拽撕布 步骤 1 打开 3ds Max。 打开 3ds Max 步骤 2 在透视视口中创建平面。保持其长度 后座和宽度后座为 100。 创建平面 步骤 3 转到助手>假人并在 飞机的两侧。 助手>假人 步骤 4 选…

2023牛客暑期多校训练营2

D.The Game of Eating 思路&#xff1a;考虑贪心。每个人都会选择一道对于自身价值最大的菜&#xff0c;但考虑到其他人会帮自己提供一定的贡献&#xff0c;即样例二&#xff0c;第一个只需要点第三道菜&#xff0c;第二个人点第四道菜&#xff0c;自动帮第一个人补全了第四道…