【深度学习】因果推断与机器学习的高级实践 | 数学建模

文章目录

  • 因果推断
  • 因果推断的前世今生
    • (1)潜在结果框架(Potential Outcome Framework)
    • (2)结构因果模型(Structual Causal Model,SCM)

身处人工智能爆发式增长时代的机器学习从业者无疑是幸运的,人工智能如何更好地融入人类生活的方方面面是这个时代要解决的重要问题。滴滴国际化资深算法工程师王聪颖老师发现,很多新人在入行伊始,往往把高大上的模型理论背得滚瓜烂熟,而在真正应用时却摸不清门路、抓不住重点,导致好钢没用到刀刃上,无法取得实际的业务收益。如果能有一本指导新人从入门到精通、从理论到实践的技术书籍,那该多好,这样不仅省去了企业培养新人的成本,也留给了新人自我学习成长的空间。

本着这个初心,王老师花了将近一年的业余时间来复盘总结了自己以及身边同事从小白成长为独当一面的合格算法工程师的成长历程和项目经验,最终以理论结合实践的方式写入《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》这本书中,希望能通过他的经验,真正地帮助到对机器学习算法感兴趣的读者。请添加图片描述

《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》作者:王聪颖  谢志辉

因果推断

在这里插入图片描述
因果推断是近年来机器学习领域新兴的一个分支,它主要解决“先有鸡还是先有蛋”的问题。因此,因果推断和关联关系最主要的区别是:因果推断是试图通过变量X的变化推断其对结果Y带来的影响有多少,而关联关系则侧重于表达变量之间的趋势变化,如两个变量图片之间有相关性关系,如果图片随着图片的递增而递增,则说明图片和图片正相关,如果图片随着图片递增而下降,则说明两者负相关。因此因果性(Causality)和相关性(Correlation)有着本质的不同,为了帮助读者更好地理解,这里举个例子:
某研究表明,吃早饭的人比不吃早饭的人体重更轻,因此“专家”得出结论——吃早饭可以减肥。但事实上,吃早饭和体重轻很有可能只是相关性关系,而并非因果关系。吃早饭的人可能是因为三餐规律、经常锻炼、睡眠充足等等一系列健康的生活方式,最终导致了他们的体重更轻。图1所示为因果推断中的混杂因子,描述了健康的生活方式、吃早饭、体重轻三者的关系。
请添加图片描述
很显然,拥有健康的生活方式的人会吃早餐,健康生活方式同时也会导致体重轻,可见健康的生活方式是吃早餐和体重轻的共同原因。正是因为有这样的共同原因存在,导致我们不能轻易地得出吃早餐和体重轻之间存在因果关系,所以我们认为“专家”的结论是草率的。吃早餐和减肥之间只存在相关性,不存在因果性,并把这种阻断因果关系推断的共同原因称之为混杂因子。那么如图1右所示,消除混杂因子,寻找两个变量之间的因果关系,并量化出来某种自变量X的改变,影响了因变量Y的改变程度是因果推断主要探讨的内容。

因果推断的前世今生

在这里插入图片描述

(1)潜在结果框架(Potential Outcome Framework)

在介绍潜在结果框架之前,先列出两个需要声明的假设来描述个体因果效应,另外需要注意的是为了更快的帮助大家入门,本文只描述二元处理,即个体只有接受处理和不接受处理两种情况,并对应两种处理方式的结果。
请添加图片描述
但是在现实世界中,个体图片在同一时刻要么接受处理,要么不接受处理,不可能同时既接受处理又不接受处理,因此个体因果作用是不可识别的,个体的观测数据结果图片

在已知个体因果作用无法识别的情况下,如何进行因果推断呢?或许把因果作用的识别从个体转移到了总体身上是个行之有效的解决方案,于是便有了平均因果作用(ATE,
Average Treatment
Effect)的概念。平均因果作用不再比较个体的因果作用,而是比较两组群体在不同的处理下的潜在结果,这两组群体除了接受的处理不同之外,必须具有同质的属性,这样计算出的平均因果作用才能无偏,随机对照实验(Random
controlled Trial,RCT)是保证两组群里无偏性的基本实验方法。把全量数据随机分为实验组(Treatment
Group)和对照组(Control
Group),其中实验组的T=1,对照组的T=0,那么平均因果作用的公式如下:请添加图片描述

其中Y(1)和Y(0)分别是接受处理情况下实验组的结果和不接受处理情况下对照组的结果。至此,潜在结果框架下做因果推断的基本理论知识已经讲解完毕,归纳起来主要有以下两点。
1)随机对照试验保证组别的同质性。

2)从不可评估的个体因果作用转移向评估总体的平均因果效应。

(2)结构因果模型(Structual Causal Model,SCM)

有向无环图是由节点和有向边组成的,有向边的上游是父节点,有向边指向的方向是子节点。在DAG中的某个节点的父节点与其非子节点都独立,根据全概率公式和条件独立性,一个有向无环图中的所有节点的联合概率分布可以表达为:
在这里插入图片描述
其中图片是所有指向图片的父节点,为了更好地帮助读者理解有向无环图中的联合分布表达,这里给出一个具体的DAG实例,如图2所示。请添加图片描述
根据有向无环图的条件独立性和联合概率分布的公式,图2的联合分布可以表达为:请添加图片描述
每一个有向无环图产出了唯一的联合分布,但是一个联合分布不一定只对应着一个有向无环图,比如图片的联合概率分布有可能是图片,也可能是图结构图片,而两种图结构的因果关系完全相反,这也正是贝叶斯网络不适合做因果模型的原因。为了把DAG改造成可以表达因果关系的因果图,需要引入do算子。这里的do算子就表达的是一种干预,图片表示将指向节点图片的有向边全部切除掉,并且节点图片赋值为常数,在do算子干预后,DAG的联合概率分布有了变化,表达为如下的形式:请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

在图3的链式、叉式、反叉式三种路径结构中,反叉式结构中的A、C天然相互独立,B又被称为对撞子,链式或者叉式结构,以B为条件可以阻断A和C之间的关联关系,从而实现A、C相互独立。d-分离就是为了达到变量独立的目的,而对不同的路径结构采取的阻断的操作,具体的d-分离法则归纳起来如下。
1)当某条路径上有两个箭头同时指向某个变量时,那这个变量称之为对撞子,并且这条路径被对撞子阻断。
2)如果某条路径含有非对撞子,那么当以非对撞子为条件时,这条路径可以被阻断。
3)当某条路径以对撞子为条件时,这条路径不仅不会被阻断,反而会被打开。

这里需要注意的是,以某个变量为条件指的是指定某个变量的值,比如以年龄这个变量为条件,就是指定年龄为0或者1。
在了解d-分离法则是可以通过以某个变量为条件进行阻断,从而实现变量间的独立之后,便可以结合后门准则消除混杂因子对未知结构的因果图进行因果推断了。在弄清楚后门准则之前,需要了解后门路径、前门路径的概念。从变量X到变量Y的后门路径就是连接X到Y,但是箭头不从X出发的路径,与之相应的前门路径是连接X到Y且箭头从X出发的路径,后门准则的定义是可以通过d-分离阻断X和Y之间所有的后门路径,那么我们认为可以识别从X到Y之间的因果关系,并把阻断后门路径的因子称之为混杂因子。至此,知道了后门准则的方法无须观测到所有的变量,只需要观测到以哪个变量为条件可以消除后门路径,从而使得X到Y之间的因果关系可识别。
在这里插入图片描述
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/169179.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Loadrunner安装大全

目录 一 、下载篇 二、安装篇 三、破解篇 四、Loadrunner支持哪些操作系统? 五、安装Loadrunner需要满足哪些系统要求? 六、安装Loadrunner时是否需要注意什么问题? 七、安装完成后如何验证Loadrunner是否正常工作? 八、如…

【每日一题】二叉树中的伪回文路径

文章目录 Tag题目来源题目解读解题思路方法一:递归(DFS)方法二:位运算 写在最后 Tag 【递归/DFS】【伪回文】【二叉树】【2023-11-25】 题目来源 1457. 二叉树中的伪回文路径 题目解读 伪回文路径指的是路径中的节点值经过重新…

基于51单片机的FM数字收音机系统电路设计

**单片机设计介绍,基于51单片机的FM数字收音机系统电路设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于51单片机的FM数字收音机系统是一种用于接收和播放FM广播信号的设备,以下是一个基本的电路设…

ubuntu22.04 安装 jupyterlab

JupyterLab Install JupyterLab with pip: pip install jupyterlabNote: If you install JupyterLab with conda or mamba, we recommend using the conda-forge channel. Once installed, launch JupyterLab with: jupyter lab

Pycharm创建项目新环境,安装Pytorch

在python项目中,很多项目使用的各类包的版本是不一致的。所以我们可以对每个项目有专属于它的环境。所以这个文章就是教你如何创建新环境。 一、创建新环境 首先我们需要去官网下载conda。然后在Pycharm下面添加conda的可执行文件。 用conda创建新环境。 二、…

CSS新特性(2-2)

CSS新特性(2-2) 前言box相关box-shadow background背景rgba颜色与透明度transform:rotate(Xdeg) 2D旋转transform:tranlate 平移 前言 本文继续讲解CSS3其他的新特性,想看之前新特性点击这里,那么好本文正式开始。 box相关 box…

开源与闭源

我的观点: 开源与闭源软件都有各自的优势和劣势,没有绝对的对错之分。.. 一、开源和闭源的优劣势比较 开源的好处与劣处 优势: 创新与合作:开源软件能够吸引更多的开发者参与到项目中来,促进创新和合作。开放的源代码…

【ArcGIS Pro微课1000例】0036:栅格影像裁剪与提取(矢量范围裁剪dem高程数据)

本实验讲解在ArcGIS Pro中进行栅格影像裁剪与提取(矢量范围裁剪dem高程数据)的方法。DEM、DOM、DSM等栅格数据方法也可以实现。 文章目录 一、加载实验数据二、裁剪工具的使用1. 裁剪栅格2. 按掩膜提取一、加载实验数据 加载配套实验数据包中的0036.rar中的dem数据和矢量裁剪…

jconsole的基本使用和死锁的检测

jconsole的基本使用和死锁的检测 因为jconsole是JDK自带的,所以安装了JDK就可以直接打开了。 1. 打开方式 cmd命令行打开:输入jconsole,然后按Enter JDK安装目录,bin目录下,双击即可打开 选择一个进程然后打开 可…

深入解析Selenium动作链:精通点击、拖拽、切换等操作

背景: 一些交互动作都是针对某个节点执行的。比如,对于输入框,我们就调用它的输入文字和清空文字方法;对于按钮,就调用它的点击方法。其实,还有另外一些操作,它们没有特定的执行对象&#xff0…

中国信通院王蕴韬:从“好用”到“高效”,AIGC需要被再次颠覆

当下AIGC又有了怎样的颠覆式技术?处于一个怎样的发展阶段?产业应用如何?以及存在哪些风险?针对这些问题,我们与中国信通院云计算与大数据研究所副总工程师王蕴韬进行了一次深度对话,从他哪里找到了这些问题…

电路 buck-boost相关知识

BUCK-BOOST 文章目录 BUCK-BOOST前言一、DC-DC工作模式电容电感特性伏秒积平衡原理 二、BUCK电路三、BOOST电路四、BUCK-BOOST电路总结 前言 最近需要用到buck-boost相关的电路知识,于是便写下这篇文章复习一下。 一、DC-DC 在学习buck-boost电路之前我们先来看一…

邮件泄密案例分析

近日,一起令人震惊的事件在美军方内部引发了广泛关注。据报道,美军方意外将数百万封包含敏感信息的邮件发至非洲国家马里。这些邮件涉及的内容十分广泛,包括军事行动计划、人员部署、战术策略等,甚至还有部分涉及国家安全和战略决…

前缀和——238. 除自身以外数组的乘积

文章目录 🍷1. 题目🍸2. 算法原理🍥解法一:暴力求解🍥解法二:前缀和(积) 🍹3. 代码实现 🍷1. 题目 题目链接:238. 除自身以外数组的乘积 - 力扣&a…

代码随想录算法训练营第五十八天|739. 每日温度、496. 下一个更大元素 I

第十章 单调栈part01 739. 每日温度 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用…

小程序项目:springboot+vue基本微信小程序的学生健康管理系统

项目介绍 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时…

武汉教育E卡通学生证照片尺寸要求及证件照集中采集方法

”武汉教育E卡通“电子学生证旨在数字化中小学生身份,提供通用的教育卡,实现身份认证的电子化、权威化和集成化。校内一卡通系统包括刷卡考勤、电子班牌、图书借阅等,全面记录学生在校业务。同时,采集社会通行、实践活动等数据&am…

Redis大key与热Key

什么是 bigkey? 简单来说,如果一个 key 对应的 value 所占用的内存比较大,那这个 key 就可以看作是 bigkey。具体多大才算大呢?有一个不是特别精确的参考标准: bigkey 是怎么产生的?有什么危害?…

Redis数据备份和还原

Redis SAVE 命令用于创建当前数据库的备份文件,文件名默认为dump.rdb。备份数据库数据可以增强对数据的保护,提升数据的安全性。当数据不小心丢失或者被删除时,我们就可以通过相应的操作进行数据恢复。本节介绍 Redis 的数据备份和数据还原操…

MySQL表的操作『增删改查』

✨个人主页: 北 海 🎉所属专栏: MySQL 学习 🎃操作环境: CentOS 7.6 阿里云远程服务器 🎁软件版本: MySQL 5.7.44 文章目录 1.创建表1.1.创建时指定属性 2.查看表2.1.查看表结构2.2.查看建表信息…