搭配:基于OpenCV的边缘检测实战

引言

计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。

同样,计算机能够通过检测与估计物体的结构和性质相关的特征来识别物体。其中一个特征就是边缘。

在数学上,边是两个角或面之间的一条线。边缘检测的关键思想是像素亮度差异极大的区域表示边缘。因此,边缘检测是对图像亮度不连续性的一种度量。

Sobel边缘检测

Sobel边缘检测器也称为Sobel–Feldman运算符或Sobel过滤器,它的工作原理是通过计算图像中每个像素的图像强度梯度。

它找到了从亮到暗的最大亮度增加方向以及该方向的变化率。使用该过滤器时,可以分别在X和Y方向上或一起处理图像。

1a1d7bff7d9c77a1ad49c8732e167cd0.png

Sobel检测器使用3X3核函数,这些核函数与原始图像进行卷积,计算出导数的近似值。

为了检测图像中的水平边缘(x方向) ,我们将使用x方向内核来扫描图像,用于检测垂直边缘。

import cv2
import numpy as np
import matplotlib.pyplot as plt
# Load the image
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# Convert image to gray scale
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# 3x3 Y-direction  kernel
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
# 3 X 3 X-direction kernel
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
# Filter the image using filter2D, which has inputs: (grayscale image, bit-depth, kernel)
filtered_image_y = cv2.filter2D(image_gray, -1, sobel_y)
filtered_image_x = cv2.filter2D(image_gray, -1, sobel_x)

现在,让我们绘制上面代码的输出。

(fig, (ax1, ax2, ax3)) = plt.subplots(1, 3, figsize=(25, 25))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('sobel_x')
ax2.imshow(filtered_image_y)
ax3.title.set_text('sobel_y filter')
ax3.imshow(filtered_image_x)
plt.show()

33c1fad402ed9d42ea870f85573e4dbd.png

不需要记住所有的过滤器内核。可以直接在 OpenCV 库中使用您选择的相应过滤器。

在OpenCV中,可以像如下所示应用Sobel边缘检测。

sobel_x_filtered_image = cv2.Sobel(image_gray, cv2.CV_64F, 1, 0, ksize=3)
sobel_x_filtered_image = cv2.Sobel(image_gray, cv2.CV_64F, 0, 1, ksize=3)
sobel_y_filtered_image = cv2.convertScaleAbs(sobel_x_filtered_image)
sobel_y_filtered_image = cv2.convertScaleAbs(sobel_y_filtered_image)

Laplacian边缘检测

拉普拉斯边缘检测器比较图像的二阶导数。它测量的是一阶导数在一次通过中的变化率。拉普拉斯边缘检测使用一个核心,包含负值的交叉模式,如下所示。

535b00be8f065ebe6b677b9c951666ea.png

拉普拉斯边缘检测器的一个缺点是对噪声敏感。也就是说,它可能最终检测噪声作为边缘。在应用拉普拉斯过滤器之前对图像进行平滑处理是一种常见的做法。

我们可以实现一个拉普拉斯边缘检测器如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# remove noise
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# Reduce noise in image
img = cv2.GaussianBlur(image_gray,(3,3),0)
# Filter the image using filter2D, which has inputs: (grayscale image, bit-depth, kernel)
filtered_image = cv2.Laplacian(img, ksize=3, ddepth=cv2.CV_16S)
# converting back to uint8
filtered_image = cv2.convertScaleAbs(filtered_image)
# Plot outputs
(fig, (ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 15))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('Laplacian Filtered Image')
ax2.imshow(filtered_image, cmap='gray')

05f356387c2adf660bbb52af98d72f03.png

Canny边缘检测

Canny边缘检测可以分为如下四个步骤:

· 消除噪音

· 梯度计算

· 利用非最大值抑制提取图像边缘

· 滞后阈值法

因为Canny边缘检测对噪声很敏感,所以第一步就是去噪,通过首先应用高斯滤波器对图像进行平滑处理。

Canny边缘检测的第二步是梯度计算。它通过沿着梯度方向计算图像中灰度(梯度)的变化率来实现。

我们知道图像的亮度在边缘处最高,但实际上,亮度并不是在一个像素处达到峰值; 相反,邻近的像素具有很高的亮度。在每个像素位置,canny 边缘检测比较像素,并在沿梯度方向选择3X3邻域的局部最大值。这个过程被称为非最大值抑制。

这一步结束之后,会形成一些破碎的边缘。最后一步是使用一种叫做滞后阈值的方法来修复这些断裂的边缘。

对于滞后阈值,有两个阈值: 高阈值和低阈值。

任何梯度值高于高阈值的像素自动保持为边缘。对于梯度位于高阈值和低阈值之间的像素,有两种处理方式。检查像素是否可能连接到边缘; 如果连接,则保留像素,否则丢弃。低于低阈值的像素被自动丢弃。

现在,让我们通过OpenCV实现一个Canny边缘检测。

import cv2
import numpy as np
import matplotlib.pyplot as plt
image_original = cv2.imread('building.jpg', cv2.IMREAD_COLOR)
# remove noise
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
filtered_image = cv2.Canny(image_gray, threshold1=20, threshold2=200)
# Plot outputs
(fig, (ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 15))
ax1.title.set_text('Original Image')
ax1.imshow(image_original)
ax2.title.set_text('Laplacian Filtered Image')
ax2.imshow(filtered_image, cmap='gray')

c161cf4c93f1fd5bc4ec9af3d08e64ec.png

·  END  ·

HAPPY LIFE

8cce092d8ed4e47d3e9c4f126c0aded0.png

觉得有趣就点亮在看吧

dbb4a6abd03b5fccdad69b3a883b5c5a.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/168585.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 常见命令篇

history 获取执行的指令记录 语法格式: history [参数] 常用参数: -a 写入命令记录 -c 清空命令记录 -d 删除指定序号的命令记录 -n 读取命令记录 -r 读取命令记录到缓冲区 -s 将指定的命令添加到缓冲区 -w 将缓冲区信息写入到历史文件 history#获取最近的三条…

C#关键字、特性基础及扩展合集(持续更新)

一、基础 Ⅰ 关键字 1、record record(记录),编译器会在后台创建一个类。支持类似于结构的值定义,但被实现为一个类,方便创建不可变类型,成员在初始化后不能再被改变 (C#9新增) …

Hologres性能优化指南1:行存,列存,行列共存

在Hologres中支持行存、列存和行列共存三种存储格式&#xff0c;不同的存储格式适用于不同的场景。 在建表时通过设置orientation属性指定表的存储格式&#xff1a; BEGIN; CREATE TABLE <table_name> (...); call set_table_property(<table_name>, orientation,…

Centos上安装Docker和DockerCompose

安装Docker Docker可以运行在MAC&#xff0c;Windows&#xff0c;CtenOS,UBUNTU等操作系统上。目前主流的版本有Docker CE和Docker EE&#xff0c;CE是免费的开源Docker版本&#xff0c;适用于开发人员和小型团队&#xff0c;EE是适用于企业的容器化解决方案。它基于Docker CE…

2023-11-24 LeetCode每日一题(统计和小于目标的下标对数目)

2023-11-24每日一题 一、题目编号 2824. 统计和小于目标的下标对数目二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始长度为 n 的整数数组 nums 和一个整数 target &#xff0c;请你返回满足 0 < i < j < n 且 nums[i] nums[j] < targe…

开源的文本编辑器Notepad++ 8.6.0版本在Windows系统上的下载与安装配置

目录 前言一、Notepad 安装二、使用配置总结 前言 Notepad 是一款简单而强大的文本编辑工具&#xff0c;通常用于快速创建和编辑文本文件。以下是 Notepad 工具的详细介绍。注&#xff1a;文末附有下载链接&#xff01; 主要特点&#xff1a; ——简洁易用&#xff1a; Note…

蓝桥杯物联网竞赛_STM32L071_4_按键控制

原理图&#xff1a; 当按键S1按下PC14接GND&#xff0c;为低电平 CubMX配置: Keil配置&#xff1a; main函数&#xff1a; while (1){/* USER CODE END WHILE */OLED_ShowString(32, 0, "hello", 16);if(Function_KEY_S1Check() 1){ OLED_ShowString(16, 2, &quo…

FANUC机器人到达某个点位时,为什么不显示@符号?

FANUC机器人到达某个点位时,为什么不显示@符号? 该功能由变量$MNDSP_POSCF = 0(不显示)/1(显示)/2(光标移动该行显示) 控制,该变量设置为不同的值,则启用对应的功能。 如下图所示,为该变量设置不同的值时的对比, 其他常用的系统变量可参考以下内容: 在R寄存器指定速度…

什么是AWS CodeWhisperer?

AWS CodeWhisperer https://aws.amazon.com/cn/codewhisperer/ CodeWhisperer 经过数十亿行代码的训练&#xff0c;可以根据您的评论和现有代码实时生成从代码片段到全函数的代码建议。 ✔ 为您量身定制的实时 AI 代码生成器 ✔ 支持热门编程语言和 IDE ✔ 针对 AWS 服务的优…

java设计模式学习之【工厂模式】

文章目录 引言工厂方法模式简介定义与用途&#xff1a;实现方式&#xff1a; 使用场景优势与劣势工厂模式在spring中的应用电费计算示例&#xff08;简单工厂模式&#xff09;改善为方法工厂模式代码地址 引言 在软件开发的世界中&#xff0c;对象的创建可能是一个复杂且重复的…

网安融合新进展:Check Point+七云网络联合研发,加固大型企业边缘、分支侧安全

AI 爆火、万物互联&#xff0c;底层需要更灵活的网络设施提供支撑。据国际分析机构 Gartner 预测&#xff0c;到 2024 年&#xff0c;SD-WAN&#xff08;软件定义的广域网&#xff09;使用率将达到 60%。不过边缘和终端兴起&#xff0c;未经过数据中心的流量也在成为新的安全风…

Spring Boot Actuator 2.2.5 基本使用

1. pom文件 &#xff0c;添加 Actuator 依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> 2.application.properties 文件中添加以下配置 …

LLMLingua:集成LlamaIndex,对提示进行压缩,提供大语言模型的高效推理

大型语言模型(llm)的出现刺激了多个领域的创新。但是在思维链(CoT)提示和情境学习(ICL)等策略的驱动下&#xff0c;提示的复杂性不断增加&#xff0c;这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理&#xff0c;因此需要高效的解决方案&#xff0c;本文将介绍LLM…

MATLAB实战 | MEX文件

应用接口是MATLAB与其他语言相互调用各自函数的方法&#xff0c;MEX文件使MATLAB程序中可以调用或链接其他语言编写的函数&#xff0c;而MATLAB引擎使其他语言程序中可以调用MATLAB函数。 01、MEX文件 MEX是MATLAB Executable的缩写&#xff0c;是MATLAB中用于调用其他语言编写…

Leetcode103 二叉树的锯齿形层序遍历

二叉树的锯齿形层序遍历 题解1 层序遍历双向队列 给你二叉树的根节点 root &#xff0c;返回其节点值的 锯齿形层序遍历 。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 提示&#xff1a…

【计算机网络】(网络层)定长掩码和变长掩码

目录 1、IPV4地址的应用规划 2、例题分析 2.1、定长的子网掩码 2.2、变长的子网掩码 1、IPV4地址的应用规划 定长的子网掩码&#xff08;FLSM&#xff09;&#xff1a; 使用同一个子网掩码划分子网&#xff0c;每个子网所分配的IP地址数量相同&#xff0c;造成IP地址的浪费…

腾讯云发布新一代基于AMD处理器的星星海云服务器实例SA5

基础设施的硬实力&#xff0c;愈发成为云厂商的核心竞争力。 11月24日&#xff0c;腾讯云发布了全新一代星星海服务器。基于自研服务器的高密设计与硬件升级&#xff0c;对应云服务器SA5是全球首家搭载第四代AMD EPYC处理器&#xff08;Bergamo&#xff09;的公有云实例&#…

京东数据分析:2023年10月京东彩妆销售大数据采集

鲸参谋监测的京东平台10月份彩妆市场销售数据已出炉&#xff01; 鲸参谋数据显示&#xff0c;今年10月份&#xff0c;京东平台上彩妆市场的销量将近430万&#xff0c;环比增长约21%&#xff0c;同比下滑约3%&#xff1b;销售额将近5.8亿&#xff0c;环比增长约7%&#xff0c;同…

web静态网页设计与制作-基于HTML+CSS+JS实现旅游摄影网站

web静态网页设计与制作&#xff0c;基于HTMLCSSJS实现精美的旅游摄影网站&#xff0c;拥有极简的设计风格&#xff0c;丰富的交互动效&#xff0c;让人眼前一亮&#xff0c;享受视觉上的体验。 我使用了基本的HTML结构来构建网页&#xff0c;并使用CSS样式进行美化设计&#xf…

NB-IoT BC260Y Open CPU平台篇②AEP物联网平台天翼物联CWing

NB-IoT BC260Y Open CPU平台篇②AEP物联网平台天翼物联CWing 1、注册账号2、创建属于自己项目的产品3、协议解析:4、添加设备5、设备模拟测试:6、设备调试:最近做了几个项目,都是将终端产品连接到天翼物联Cwing平台和Onenet平台,个人感觉这2个平台功能还是挺全的比较好用。…