数据结构——单链表(Singly Linked List)

1.链表介绍

        链表是一种物理储存上非连续、非顺序的存储结构。数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。

        对于上图,每一个结点都是一个结构体,这个结构体内存储的成员是值和下一个结点的地址。所以plist存储的是第一个结点的地址(即plist为一个结构体指针),而后续每个节点都会存储对于自己下一个结点的地址。由于链表的结点是通过malloc一个个申请出来的,所以其存储空间是不连续的,也是由于这个原因我们才需要通过一个结构体指针来访问逻辑上的下一个结点。

2.链表的分类

        链表具有三个特征,根据这三个特征的排列组合得知链表有8种组合。

2.1 单向和双向

        

       单向链表的每个结点成员只有指向下一个结点的指针,而没有指向上一个结点的指针。双向链表则二者皆有,所以单向链表就像“过河的卒”,不可以回头访问自己的上一个结点,而双向链表则既可以访问自己的上一个结点,也可以访问自己的下一个结点。

2.2 带头和不带头

        带头链表和不带头链表的区别就在于带头链表有一个“头结点”。

总结下来,带头链表会有一些优势:

        ① 避免空指针的访问:因为头结点又名哨兵位,所以它起到一个放哨的作用。无论链表结构是否为空,都可以放心的访问链表,因为有头结点的存在,就算链表为空也不会访问到空指针,更加安全。

        ② 函数传参不需要传递二级指针:如果没有头结点,当我对链表增删查改操作时,由于手上拿的是链表的第一个结点,所以如果操作到链表第一个位置,可能会涉及到链表第一个结点指针的变化,而传一级指针的参数是不会使该操作生效的,所以需要二级指针。但是有了头结点后无论做什么操作,头结点一旦生成直至链表销毁都不会改变,所以不需要传递二级指针,更加方便。

2.3 循环和非循环

        非循环链表的尾结点由于是最后一个结点,其后没有结点,所以它的next指针是指向NULL的。循环链表的尾结点则是指回了链表的第一个结点,使得整体结构体现出循环的功能。

        

        尽管有八种链表的组合形式,但是我们常用的的只有两种形式的链表。即单向不带头不循环链表双向带头循环链表。

3.单链表工程

对于一个单链表工程,我们一般模式需要分为三部分。

        SList.h 为头文件,其中包含库函数头文件的包含,顺序表结构体的定义与声明,接口函数的声明。

        SList.c 包含接口函数的定义。

        Test.c 是我们的测试源文件,从这里进入main函数。

 3.1 单链表的定义

        建立一个单链表需要多个结点共同构成,我们针对单链表一个结点进行定义,将其定义为一个结构体,包含数据和下一个结点的指针。

typedef int SLNDataType;typedef struct SListNode
{SLNDataType val;struct SListNode* next;
}SLNode;

3.2 单链表的函数接口

        对一个单链表,我们需要一些函数来方便我们管理数据。因此我们所要实现的基本的函数接口需要包含增删查改等功能。

3.2.1 单链表结点插入

        单链表常用的插入数据方式有:头插,即在链表最前端插入数据结点;尾插,即在链表最后端插入数据结点;随机插入,即在指定的结点前或者后插入结点。

        单链表由于没有头结点,所以在插入时很有可能需要改变头结点,例如头插或链表为空时插入。所以在参数传递时我们不得不以二级指针的形式进行传参,这样可以在函数内部修改头结点,从而成功插入结点。

3.2.1.1 单链表创建结点

        因为在单链表的函数接口中有多个结点需要插入结点,需要频繁创建结点并以不同的方式插入,所以我们将创建节点的过程封装成一个函数,在需要创建结点时调用函数即可,避免代码冗余。

SLNode* CreateNode(SLNDataType x)
{SLNode* newnode = (SLNode*)malloc(sizeof(SLNode));if (newnode == NULL){perror("malloc");exit(-1);}newnode->val = x;newnode->next = NULL;return newnode;
}
3.2.1.2 单链表头插

        单链表头插时只需要将原来的第一个结点链接在新结点之后即可。

void SLTPushFront(SLNode** pphead, SLNDataType x)
{assert(pphead);SLNode* tmp = CreateNode(x);tmp->next = *pphead;*pphead = tmp;
}
3.2.1.3 单链表尾插

        单链表尾插需要先找到尾结点,但由于单链表的单向不循环的特性,我们只能从头遍历链表找到尾结点,才能将新结点链接在尾结点之后。

void SLTPushBack(SLNode** pphead, SLNDataType x)
{assert(pphead);if (*pphead == NULL){*pphead = CreateNode(x);}else{SLNode* tail = *pphead;while (tail->next != NULL){tail = tail->next;}tail->next = CreateNode(x);}
}
3.2.1.4 单链表在指定结点前插入

        在指定节点前插入需要这个结点前一个结点的指针指向新结点,所以我们就需要先遍历找到这个结点的前一个结点。

//在pos节点前插入
void SLTInsert(SLNode** pphead, SLNode* pos, SLNDataType x)
{assert(pphead);assert(*pphead);assert(pos);SLNode* tmp = CreateNode(x);if (pos == *pphead){tmp->next = *pphead;*pphead = tmp;}else{SLNode* prev = *pphead;tmp->next = pos;while (prev->next != pos){//if (prev->next == NULL)//{//	printf("插入节点有误\n");//	exit(-1);//}prev = prev->next;}prev->next = tmp;}
}
3.2.1.5 单链表在指定结点后插入

        在指定节点后插入就可以不用遍历链表,直接链接即可。

void SLTInsertAfter(SLNode** pphead, SLNode* pos, SLNDataType x)
{assert(pphead);assert(pos);SLNode* tmp = CreateNode(x);tmp->next = pos->next;pos->next = tmp;
}

3.2.2 单链表结点删除

        单链表常用的删除结点的方式有:头删,即删除在链表最前端的结点;尾删,即删除在链表最后端的结点;随机删除,即删除在指定的结点前或者后的结点。

3.2.2.1 单链表头删

        头删只需要将第一个结点释放掉,然后将原来指向链表第一个结点的变量赋值第二个结点即可。

void SLTPushFront(SLNode** pphead, SLNDataType x)
{assert(pphead);SLNode* tmp = CreateNode(x);tmp->next = *pphead;*pphead = tmp;
}
3.2.2.2 单链表尾删

        尾删需要遍历链表找到尾结点,然后将尾结点释放并将尾结点的前一个结点的next指针赋值为空指针。需要警惕只有一个结点的链表,需要将链表置为空。

void SLTPopBack(SLNode** pphead)
{assert(pphead);//0个节点assert(*pphead);//1个节点SLNode* prev = NULL;SLNode* tail = *pphead;if (tail->next == NULL){free(tail);tail = NULL;*pphead = NULL;}else{while (tail->next != NULL){prev = tail;tail = tail->next;}free(tail);tail = NULL;prev->next = NULL;}
}
3.2.2.3 单链表删除指定结点

        想要删除一个指定结点,需要找到其前一个结点,将前一个结点与后一个结点链接起来。

//删除pos节点
void SLTErase(SLNode** pphead, SLNode* pos)
{assert(pphead);assert(*pphead);assert(pos);if (pos == *pphead){SLNode* tmp = *pphead;*pphead = (*pphead)->next;free(tmp);tmp = NULL;}else{SLNode* prev = *pphead;while (prev->next != pos){/*if (prev->next == NULL){printf("删除节点有误\n");exit(-1);}*/prev = prev->next;}prev->next = pos->next;free(pos);pos = NULL;}
}
3.2.2.4 单链表在指定结点后删除

        删除指定结点后一个结点,只需要将这个结点和它的下下个结点链接起来即可。

//在pos位置后删除
void SLTEraseAfter(SLNode** pphead, SLNode* pos)
{assert(pphead);assert(pos);assert(pos->next);SLNode* tmp = pos->next;pos->next = tmp->next;free(tmp);tmp = NULL;
}

3.2.3 单链表打印

        依次遍历所有结点即可,由于不需要改变链表的值,所以可以传递一个一级指针。

void SLTPrint(SLNode* phead)
{while (phead != NULL){printf("%d->", phead->val);phead = phead->next;}printf("NULL\n");
}

3.2.4 单链表查找

        用于查找链表中指定值的结点,会返回该结点的地址。所以,只需要遍历链表并且比较即可。

SLNode* SLTFind(SLNode* phead, SLNDataType x)
{SLNode* tmp = phead;while (tmp != NULL){if (tmp->val == x){return tmp;}else{tmp = tmp->next;}}printf("未找到节点\n");return NULL;
}

3.2.5 单链表销毁

        销毁单链表只需要遍历链表,依次释放所有结点即可。

void SLTDestroy(SLNode** pphead)
{while (*pphead != NULL){SLNode* tmp = *pphead;*pphead = (*pphead)->next;free(tmp);tmp = NULL;}
}

4.单链表总结反思

        无头单向不循环链表,这种链表虽然结构简单但是应用广泛。在最近的学习过程中,我发现不少与链表有关的题目多用单链表来设题,除此之外,一些更加复杂的结构也需要用单链表作为支撑,所以可以看出其重要性。

        除此之外,恰恰是因为其结构简单,所以对特殊情况的限制较少,这就需要我在写代码时充分考虑可能会发生的所有情况,以便做出合理控制。毫无疑问,单链表是很重要的,我感觉它就像“原汁原味”的链表,需要反复品尝,并且一切上层建筑都是源于这看似简单的结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/168338.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux中vim的编译链接和gcc

gcc,g,gdb的安装 命令行写gcc,g,gdb根据提示安装:sudo apt install gcc/g/gdb gcc分布编译链接 (1)预编译: gcc -E main.c -o main.i (2)编译: gcc -S main.i -o main.s (3)汇编: gcc -c main.s -o main.o (4)链接 gcc main.o -o main 执行: ./main 或者:全路径/main 编译链…

算法-中等-链表-两数相加

记录一下算法题的学习11 两数相加 题目:给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字…

数据结构与算法编程题19

统计二叉树的叶结点个数。 #define _CRT_SECURE_NO_WARNINGS#include <iostream> using namespace std;typedef char ElemType; #define ERROR 0 #define OK 1 typedef struct BiNode {ElemType data;BiNode* lchild, * rchild; }BiNode,*BiTree;bool Create_tree(BiTre…

php通过curl方式发送接受xml数据

目录 1、php通过curl方式发送xml数据 2、php通过file_get_contents接受curl方式发送xml数据 1、php通过curl方式发送xml数据 <?php function sendXmlData($url, $xmlData) {$ch curl_init();curl_setopt($ch, CURLOPT_URL, $url);curl_setopt($ch, CURLOPT_RETURNTRANSFE…

Leetcode刷题笔记题解(C++):1008. 前序遍历构造二叉搜索树

思路&#xff1a; 1.树中的第一个值为根&#xff08;数组的第一个值&#xff09;&#xff0c;小于根的值存放在左子树中&#xff0c;大于根的值存放在右子树中&#xff1b; 2.利用递归对左右子树 /*** Definition for a binary tree node.* struct TreeNode {* int val;*…

什么是 TLS/SSL 握手

TLS/SSL 握手是一个加密过程&#xff0c;每当客户端&#xff08;如浏览器&#xff09;与服务器建立连接时&#xff0c;都会在后台进行&#xff0c;此握手协议有助于客户端和服务器之间的安全连接&#xff0c;从而促进隐私、数据完整性和机密性。 TLS/SSL 握手何时发生 每当客…

C#/.NET/.NET Core推荐学习书籍(已分类)

前言 古人云&#xff1a;“书中自有黄金屋&#xff0c;书中自有颜如玉”&#xff0c;说明了书籍的重要性。作为程序员&#xff0c;我们需要不断学习以提升自己的核心竞争力。以下是一些优秀的C#/.NET/.NET Core相关学习书籍&#xff0c;值得.NET开发者们学习和专研。书籍已分类…

常见树种(贵州省):015榧树、秋枫、滇合欢、锥栗、红豆树、刺槐、余甘子、黑荆、槐树、黄檀

摘要&#xff1a;本专栏树种介绍图片来源于PPBC中国植物图像库&#xff08;下附网址&#xff09;&#xff0c;本文整理仅做交流学习使用&#xff0c;同时便于查找&#xff0c;如有侵权请联系删除。 图片网址&#xff1a;PPBC中国植物图像库——最大的植物分类图片库 一、榧树 …

生物识别访问面临风险

安全公司 Blackwing Intelligence 发现了多个允许您绕过Windows Hello 身份验证的漏洞。 戴尔 Inspiron 灵越 15、联想 ThinkPad T14 和 Microsoft Surface Pro X笔记本电脑上会出现这种情况&#xff0c;原因是设备中集成了来自Goodix、Synaptics 和 ELAN的指纹传感器。 所有…

【数据结构 —— 堆的实现(顺序表)】

数据结构 —— 堆的实现&#xff08;顺序表&#xff09; 一.堆1.1堆的定义及结构1.1.1.堆的定义1.1.2.堆的性质1.1.3.堆的结构 二.堆的实现2.1.头文件的实现 —— &#xff08;Heap.h&#xff09;2.2.源文件的实现 —— &#xff08;Heap.c&#xff09;2.2.1.小堆的源文件2.2.2…

C#,数值计算——插值和外推,Powvargram的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Functor for variogram v(r)ar^b, /// where b is specified, a is fitted from the data. /// </summary> public class Powvargram { private do…

34970A 数据采集 / 数据记录仪开关单元

34970A 数据采集 / 数据记录仪开关单元 产品综述&#xff1a; Keysight 34970A 数据采集/数据记录仪开关单元由一个 3 插槽主机和一个内置的 6 1/2 位数字万用表组成。每个通道可以单独配置&#xff0c;以测量 11 种不同功能之一&#xff0c;这样既不会增加成本&#xff0c;也…

Git仓库瘦身大作战:133M 到 4M 的实战

开局两张图 瘦身前瘦身后 目录 开局两张图前言下载 BFG克隆代码Git 仓库瘦身清理存储库储存库 GC推送仓库 Git 瘦身验证结语开源项目 前言 在进行项目开发的过程中&#xff0c;代码仓库的体积可能会逐渐增大&#xff0c;特别是在版本控制系统中保留了大量的历史提交记录和不必…

搜索引擎---项目测试

一)项目背景: 首先介绍一下项目:项目的目标是实现一个基于JAVAAPI的站内搜索引擎 java官方文档是在学习java语言中不可或缺的权威资料&#xff0c;相比于各种网站的Java资料&#xff0c;官方文档无论是语言表达还是组织方式都要更加全面和准确&#xff0c;因为没有人比作者更加…

【计算机网络笔记】数据链路层——差错编码

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

万字长文 - Python 日志记录器logging 百科全书 - 高级配置之 日志文件配置

万字长文 - Python 日志记录器logging 百科全书 - 高级配置之 日志文件配置 前言 在 Python 的logging模块中&#xff0c;它不仅提供了基础的日志功能&#xff0c;还拥有一系列高级配置选项来满足复杂应用的日志管理需求。 说到logging 模块的高级配置&#xff0c;必须提及日…

OpenCV- 学习笔记(Python)图像处理基础

本专栏&#xff1a;主要记录OpenCV&#xff08;Python&#xff09;学习笔记 OpenCV 图像处理基础 灰度图 import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline ​ imgcv2.imread(cat.jpg) img_gray…

新王加冕,GPT-4V 屠榜视觉问答

当前&#xff0c;多模态大型模型&#xff08;Multi-modal Large Language Model, MLLM&#xff09;在视觉问答&#xff08;VQA&#xff09;领域展现了卓越的能力。然而&#xff0c;真正的挑战在于知识密集型 VQA 任务&#xff0c;这要求不仅要识别视觉元素&#xff0c;还需要结…

电源控制系统架构(PCSA)之系统分区电源域

目录 4.2 电源域 4.2.1 电源模式 4.2.2 电源域的选择 4.2.3 系统逻辑 4.2.4 Always-On域 4.2.5 处理器Clusters 4.2.6 CoreSight逻辑 4.2.7 图像处理器 4.2.8 显示处理器 4.2.9 其他功能 4.2.10 电源域层次结构要求 4.2.11 SOC域示例 4.2 电源域 电源域在这里被定…

Ubuntu20.04上编译安装TVM

本文主要讲述如何在ubuntu20.04平台上编译TVM代码并在python中import tvm成功。 源代码下载&#xff1a; git clone --recursive https://github.com/apache/tvm tvm 平台环境升级&#xff1a; 1&#xff09; sudo apt-get update 2&#xff09; sudo apt-get install -y pyth…