分布式锁详解

文章目录

  • 分布式锁
  • 1. [传统锁回顾](https://blog.csdn.net/qq_45525848/article/details/134608044?csdn_share_tail=%7B%22type%22:%22blog%22,%22rType%22:%22article%22,%22rId%22:%22134608044%22,%22source%22:%22qq_45525848%22%7D)
    • 1.1. 从减库存聊起
    • 1.2. 环境准备
    • 1.3. 简单实现减库存
    • 1.4. 演示超卖现象
    • 1.5. jvm锁问题演示
      • 1.5.1. 添加jvm锁
      • 1.5.2. 原理
    • 1.6. 多服务问题
      • 1.6.1. 安装配置nginx
      • 1.6.2. [Jmeter压力测试](https://blog.csdn.net/qq_45525848/article/details/134587261)
    • 1.7. mysql锁演示
      • 1.7.1. 一个sql
      • 1.7.2. 悲观锁
      • 1.7.3. 乐观锁
      • 1.7.4. mysql锁总结
    • 1.8. redis乐观锁
  • 2. 基于redis实现分布式锁
    • 2.1. 基本实现
    • 2.2. 防死锁
    • 2.3. 防误删
    • 2.4. redis中的lua脚本
      • 2.4.1. 现实问题
      • 2.4.2. lua介绍
      • 2.4.3. lua基本语法
      • 2.4.4. redis执行lua脚本 - EVAL指令
    • 2.5. 使用lua保证删除原子性
    • 2.6. 可重入锁
      • 2.6.1. 加锁脚本
      • 2.6.2. 解锁脚本
      • 2.6.3. 代码实现
      • 2.6.4. 使用及测试
    • 2.7. 自动续期
    • 2.8. 手写分步式锁小结
    • 2.9. 红锁算法
    • 2.10. redisson中的分布式锁
      • 2.10.1. 可重入锁(Reentrant Lock)
      • 2.10.2. 公平锁(Fair Lock)
      • 2.10.3. 联锁(MultiLock)
      • 2.10.4. 红锁(RedLock)
      • 2.10.5. 读写锁(ReadWriteLock)
      • 2.10.6. 信号量(Semaphore)
      • 2.10.7. 闭锁(CountDownLatch)
  • 3. 基于zookeeper实现分布式锁
    • 3.1. 知识点回顾
      • 3.1.1. 安装启动
      • 3.1.2. 相关概念
      • 3.1.3. java客户端
    • 3.2. 思路分析
    • 3.3. 基本实现
    • 3.4. 优化:性能优化
      • 3.4.1. 实现阻塞锁
      • 3.4.2. 监听实现阻塞锁
    • 3.5. 优化:可重入锁
    • 3.6. zk分布式锁小结
    • 3.7. Curator中的分布式锁
      • 3.7.1. 可重入锁InterProcessMutex
        • 3.7.1.1. 使用案例
        • 3.7.1.2. 底层原理
      • 3.7.2. 不可重入锁InterProcessSemaphoreMutex
      • 3.7.3. 可重入读写锁InterProcessReadWriteLock
      • 3.7.4. 联锁InterProcessMultiLock
      • 3.7.5. 信号量InterProcessSemaphoreV2
      • 3.7.6. 栅栏barrier
      • 3.7.7. 共享计数器
        • 3.7.7.1. SharedCount
        • 3.7.7.2. DistributedAtomicNumber
  • 4. 基于mysql实现分布式锁
    • 4.1. 基本思路
    • 4.2. 代码实现
    • 4.3. 缺陷及解决方案
  • 5. 总结

分布式锁

在应用开发中,特别是web工程开发,通常都是并发编程,不是多进程就是多线程。这种场景下极易出现线程并发性安全问题,此时不得不使用锁来解决问题。在多线程高并发场景下,为了保证资源的线程安全问题,jdk为我们提供了synchronized关键字和ReentrantLock可重入锁,但是它们只能保证一个工程内的线程安全。在分布式集群、微服务、云原生横行的当下,如何保证不同进程、不同服务、不同机器的线程安全问题,jdk并没有给我们提供既有的解决方案。此时,我们就必须借助于相关技术手动实现了。目前主流的实现有以下方式:

  1. 基于mysql关系型实现
  2. 基于redis非关系型数据实现
  3. 基于zookeeper/etcd实现

本篇文章将会全面深入、全程手撸代码式的讲解这三种分布式锁的实现。并深入源码讲解第三方分布式锁框架。

基础知识储备及技术要求:

​ 开发工具:idea + jdk1.8
​ 工程构建工具:maven
​ 相关框架基础:SpringBoot SpringMVC Spring Mybatis(mybatis-plus) SpringData-Redis
​ 数据库:mysql(InnoDB引擎 事务 锁机制) redis
​ 负载均衡工具:nginx
​ 压力测试工具:jmeter
​ 其他:zookeeper lua脚本语言 JUC (java.util.concurrent相关背景知识) 微服务相关背景知识

1. 传统锁回顾

1.1. 从减库存聊起

多线程并发安全问题最典型的代表就是超卖现象

库存在并发量较大情况下很容易发生超卖现象,一旦发生超卖现象,就会出现多成交了订单而发不了货的情况。

场景:

​ 商品S库存余量为5时,用户A和B同时来购买一个商品,此时查询库存数都为5,库存充足则开始减库存:

用户A:

update db_stock set stock = stock - 1 where id = 1

用户B:

update db_stock set stock = stock - 1 where id = 1

并发情况下,更新后的结果可能是4,而实际的最终库存量应该是3才对

1.2. 环境准备

建表语句:

CREATE TABLE `db_stock` (`id` bigint(20) NOT NULL AUTO_INCREMENT,`product_code` varchar(255) DEFAULT NULL COMMENT '商品编号',`stock_code` varchar(255) DEFAULT NULL COMMENT '仓库编号',`count` int(11) DEFAULT NULL COMMENT '库存量',PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

表中数据如下:

在这里插入图片描述

1001商品在001仓库有5000件库存。

创建分布式锁demo工程:

在这里插入图片描述

创建好之后:

在这里插入图片描述

pom.xml如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.2.11.RELEASE</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.atguigu</groupId><artifactId>distributed-lock</artifactId><version>0.0.1-SNAPSHOT</version><name>distributed-lock</name><description>分布式锁demo工程</description><properties><java.version>1.8</java.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.46</version></dependency><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.16</version></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope><exclusions><exclusion><groupId>org.junit.vintage</groupId><artifactId>junit-vintage-engine</artifactId></exclusion></exclusions></dependency></dependencies><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build></project>

application.yml配置文件:

server:port: 6000
spring:datasource:driver-class-name: com.mysql.jdbc.Driverurl: jdbc:mysql://172.16.116.100:3306/testusername: rootpassword: rootredis:host: 172.16.116.100

DistributedLockApplication启动类:

@SpringBootApplication
@MapperScan("com.atguigu.distributedlock.mapper")
public class DistributedLockApplication {public static void main(String[] args) {SpringApplication.run(DistributedLockApplication.class, args);}}

Stock实体类:

@Data
@TableName("db_stock")
public class Stock {@TableIdprivate Long id;private String productCode;private String stockCode;private Integer count;
}

StockMapper接口:

public interface StockMapper extends BaseMapper<Stock> {
}

1.3. 简单实现减库存

接下来咱们代码实操一下。

在这里插入图片描述

StockController:

@RestController
public class StockController {@Autowiredprivate StockService stockService;@GetMapping("check/lock")public String checkAndLock(){this.stockService.checkAndLock();return "验库存并锁库存成功!";}
}

StockService:

@Service
public class StockService {@Autowiredprivate StockMapper stockMapper;public void checkAndLock() {// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}}
}

测试:

在这里插入图片描述

查看数据库:

在这里插入图片描述

在浏览器中一个一个访问时,每访问一次,库存量减1,没有任何问题。

1.4. 演示超卖现象

接下来咱们使用jmeter压力测试工具,高并发下压测一下,添加线程组:并发100循环50次,即5000次请求。
jmeter压力测试工具使用
在这里插入图片描述

在这里插入图片描述

给线程组添加HTTP Request请求:

在这里插入图片描述

填写测试接口路径如下:

在这里插入图片描述

再选择你想要的测试报表,例如这里选择聚合报告:

在这里插入图片描述

启动测试,查看压力测试报告:

在这里插入图片描述

  • Label 取样器别名,如果勾选Include group name ,则会添加线程组的名称作为前缀
  • # Samples 取样器运行次数
  • Average 请求(事务)的平均响应时间
  • Median 中位数
  • 90% Line 90%用户响应时间
  • 95% Line 90%用户响应时间
  • 99% Line 90%用户响应时间
  • Min 最小响应时间
  • Max 最大响应时间
  • Error 错误率
  • Throughput 吞吐率
  • Received KB/sec 每秒收到的千字节
  • Sent KB/sec 每秒收到的千字节

测试结果:请求总数5000次,平均请求时间37ms,中位数(50%)请求是在36ms内完成的,错误率0%,每秒钟平均吞吐量2568.1次。

查看mysql数据库剩余库存数:还有4870

在这里插入图片描述

此时如果还有人来下单,就会出现超卖现象(别人购买成功,而无货可发)。

1.5. jvm锁问题演示

1.5.1. 添加jvm锁

使用jvm锁(synchronized关键字或者ReetrantLock)试试:

在这里插入图片描述

重启tomcat服务,再次使用jmeter压力测试,效果如下:

在这里插入图片描述

查看mysql数据库:

在这里插入图片描述

并没有发生超卖现象,完美解决。

1.5.2. 原理

添加synchronized关键字之后,StockService就具备了对象锁,由于添加了独占的排他锁,同一时刻只有一个请求能够获取到锁,并减库存。此时,所有请求只会one-by-one执行下去,也就不会发生超卖现象。

在这里插入图片描述

1.6. 多服务问题

使用jvm锁在单工程单服务情况下确实没有问题,但是在集群情况下会怎样?

接下启动多个服务并使用nginx负载均衡,结构如下:

在这里插入图片描述

启动三个服务(端口号分别8000 8100 8200),如下:

在这里插入图片描述

1.6.1. 安装配置nginx

基于安装nginx:

# 拉取镜像
docker pull nginx:latest
# 创建nginx对应资源、日志及配置目录
mkdir -p /opt/nginx/logs /opt/nginx/conf /opt/nginx/html
# 先在conf目录下创建nginx.conf文件,配置内容参照下方
# 再运行容器
docker run -d -p 80:80 --name nginx -v /opt/nginx/html:/usr/share/nginx/html -v /opt/nginx/conf/nginx.conf:/etc/nginx/nginx.conf -v /opt/nginx/logs:/var/log/nginx nginx

nginx.conf配置如下:

user  nginx;
worker_processes  1;error_log  /var/log/nginx/error.log warn;
pid        /var/run/nginx.pid;events {worker_connections  1024;
}http {include       /etc/nginx/mime.types;default_type  application/octet-stream;log_format  main  '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_referer" ''"$http_user_agent" "$http_x_forwarded_for"';access_log  /var/log/nginx/access.log  main;sendfile        on;#tcp_nopush     on;keepalive_timeout  65;#gzip  on;#include /etc/nginx/conf.d/*.conf;upstream distributed {server 172.16.116.1:8000;server 172.16.116.1:8100;server 172.16.116.1:8200;}server {listen       80;server_name  172.16.116.100;location / {proxy_pass http://distributed;}}}

在浏览器中测试:172.16.116.100是我的nginx服务器地址

在这里插入图片描述

经过测试,通过nginx访问服务一切正常。

1.6.2. Jmeter压力测试

注意:先把数据库库存量还原到5000。

参照之前的测试用例,再创建一个新的测试组:参数给之前一样

在这里插入图片描述

配置nginx的地址及 服务的访问路径如下:

在这里插入图片描述

测试结果:性能只是略有提升。

在这里插入图片描述

数据库库存剩余量如下:

在这里插入图片描述

又出现了并发问题,即出现了超卖现象。

1.7. mysql锁演示

除了使用jvm锁之外,还可以使用数据锁:悲观锁 或者 乐观锁

  1. 一个sql:直接更新时判断,在更新中判断库存是否大于0

    update table set surplus = (surplus - buyQuantity) where id = 1 and (surplus - buyQuantity) > 0 ;

  2. 悲观锁:在读取数据时锁住那几行,其他对这几行的更新需要等到悲观锁结束时才能继续 。

    select … for update

  3. 乐观锁:读取数据时不锁,更新时检查是否数据已经被更新过,如果是则取消当前更新进行重试。

    version 或者 时间戳(CAS思想)。

1.7.1. 一个sql

略。。

1.7.2. 悲观锁

在MySQL的InnoDB中,预设的Tansaction isolation level 为REPEATABLE READ(可重读)

在SELECT 的读取锁定主要分为两种方式:

  • SELECT … LOCK IN SHARE MODE (共享锁)
  • SELECT … FOR UPDATE (悲观锁)

这两种方式在事务(Transaction) 进行当中SELECT 到同一个数据表时,都必须等待其它事务数据被提交(Commit)后才会执行。

而主要的不同在于LOCK IN SHARE MODE 在有一方事务要Update 同一个表单时很容易造成死锁。

简单的说,如果SELECT 后面若要UPDATE 同一个表单,最好使用SELECT … FOR UPDATE。

代码实现

改造StockService:

在这里插入图片描述

在StockeMapper中定义selectStockForUpdate方法:

public interface StockMapper extends BaseMapper<Stock> {public Stock selectStockForUpdate(Long id);
}

在StockMapper.xml中定义对应的配置:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.atguigu.distributedlock.mapper.StockMapper"><select id="selectStockForUpdate" resultType="com.atguigu.distributedlock.pojo.Stock">select * from db_stock where id = #{id} for update</select>
</mapper>

压力测试

注意:测试之前,需要把库存量改成5000。压测数据如下:比jvm性能高很多,比无锁要低将近1倍

在这里插入图片描述

mysql数据库存:

在这里插入图片描述

1.7.3. 乐观锁

乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则重试。那么我们如何实现乐观锁呢

使用数据版本(Version)记录机制实现,这是乐观锁最常用的实现 方式。一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录 的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新。

给db_stock表添加version字段:

在这里插入图片描述

对应也需要给Stock实体类添加version属性。此处略。。。。

代码实现

public void checkAndLock() {// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){// 获取版本号Long version = stock.getVersion();stock.setCount(stock.getCount() - 1);// 每次更新 版本号 + 1stock.setVersion(stock.getVersion() + 1);// 更新之前先判断是否是之前查询的那个版本,如果不是重试if (this.stockMapper.update(stock, new UpdateWrapper<Stock>().eq("id", stock.getId()).eq("version", version)) == 0) {checkAndLock();}}
}

重启后使用jmeter压力测试工具结果如下:

在这里插入图片描述

修改测试参数如下:

在这里插入图片描述

测试结果如下:

在这里插入图片描述

说明乐观锁在并发量越大的情况下,性能越低(因为需要大量的重试);并发量越小,性能越高。

1.7.4. mysql锁总结

性能:一个sql > 悲观锁 > jvm锁 > 乐观锁

如果追求极致性能、业务场景简单并且不需要记录数据前后变化的情况下。

​ 优先选择:一个sql

如果写并发量较低(多读),争抢不是很激烈的情况下优先选择:乐观锁

如果写并发量较高,一般会经常冲突,此时选择乐观锁的话,会导致业务代码不间断的重试。

​ 优先选择:mysql悲观锁

不推荐jvm本地锁。

1.8. redis乐观锁

利用redis监听 + 事务

watch stock
multi
set stock 5000
exec

如果执行过程中stock的值没有被其他链接改变,则执行成功

在这里插入图片描述

如果执行过程中stock的值被改变,则执行失败效果如下:

在这里插入图片描述

具体代码实现,只需要改造对应的service方法:

public void deduct() {this.redisTemplate.execute(new SessionCallback() {@Overridepublic Object execute(RedisOperations operations) throws DataAccessException {operations.watch("stock");// 1. 查询库存信息Object stock = operations.opsForValue().get("stock");// 2. 判断库存是否充足int st = 0;if (stock != null && (st = Integer.parseInt(stock.toString())) > 0) {// 3. 扣减库存operations.multi();operations.opsForValue().set("stock", String.valueOf(--st));List exec = operations.exec();if (exec == null || exec.size() == 0) {try {Thread.sleep(50);} catch (InterruptedException e) {e.printStackTrace();}deduct();}return exec;}return null;}});
}

2. 基于redis实现分布式锁

2.1. 基本实现

借助于redis中的命令setnx(key, value),key不存在就新增,存在就什么都不做。同时有多个客户端发送setnx命令,只有一个客户端可以成功,返回1(true);其他的客户端返回0(false)。

在这里插入图片描述

  1. 多个客户端同时获取锁(setnx)
  2. 获取成功,执行业务逻辑,执行完成释放锁(del)
  3. 其他客户端等待重试

改造StockService方法:

@Service
public class StockService {@Autowiredprivate StockMapper stockMapper;@Autowiredprivate StringRedisTemplate redisTemplate;public void deduct() {// 加锁setnxBoolean lock = this.redisTemplate.opsForValue().setIfAbsent("lock", "111");// 重试:递归调用if (!lock){try {Thread.sleep(50);this.deduct();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 1. 查询库存信息String stock = redisTemplate.opsForValue().get("stock").toString();// 2. 判断库存是否充足if (stock != null && stock.length() != 0) {Integer st = Integer.valueOf(stock);if (st > 0) {// 3.扣减库存redisTemplate.opsForValue().set("stock", String.valueOf(--st));}}} finally {// 解锁this.redisTemplate.delete("lock");}}}
}

其中,加锁也可以使用循环:

// 加锁,获取锁失败重试
while (!this.redisTemplate.opsForValue().setIfAbsent("lock", "111")){try {Thread.sleep(40);} catch (InterruptedException e) {e.printStackTrace();}
}

解锁:

// 释放锁
this.redisTemplate.delete("lock");

使用Jmeter压力测试如下:

在这里插入图片描述

2.2. 防死锁

在这里插入图片描述

问题:setnx刚刚获取到锁,当前服务器宕机,导致del释放锁无法执行,进而导致锁无法锁无法释放(死锁)

解决:给锁设置过期时间,自动释放锁。

设置过期时间两种方式:

  1. 通过expire设置过期时间(缺乏原子性:如果在setnx和expire之间出现异常,锁也无法释放)
  2. 使用set指令设置过期时间:set key value ex 3 nx(既达到setnx的效果,又设置了过期时间)

在这里插入图片描述

压力测试肯定也没有问题。

2.3. 防误删

问题:可能会释放其他服务器的锁。

场景:如果业务逻辑的执行时间是7s。执行流程如下

  1. index1业务逻辑没执行完,3秒后锁被自动释放。

  2. index2获取到锁,执行业务逻辑,3秒后锁被自动释放。

  3. index3获取到锁,执行业务逻辑

  4. index1业务逻辑执行完成,开始调用del释放锁,这时释放的是index3的锁,导致index3的业务只执行1s就被别人释放。

    最终等于没锁的情况。

解决:setnx获取锁时,设置一个指定的唯一值(例如:uuid);释放前获取这个值,判断是否自己的锁

在这里插入图片描述

实现如下:

在这里插入图片描述

问题:删除操作缺乏原子性。

场景:

  1. index1执行删除时,查询到的lock值确实和uuid相等
  2. index1执行删除前,lock刚好过期时间已到,被redis自动释放
  3. index2获取了lock
  4. index1执行删除,此时会把index2的lock删除

解决方案:没有一个命令可以同时做到判断 + 删除,所有只能通过其他方式实现(LUA脚本

2.4. redis中的lua脚本

2.4.1. 现实问题

redis采用单线程架构,可以保证单个命令的原子性,但是无法保证一组命令在高并发场景下的原子性。例如:

在这里插入图片描述

在串行场景下:A和B的值肯定都是3

在并发场景下:A和B的值可能在0-6之间。

极限情况下1:

在这里插入图片描述

则A的结果是0,B的结果是3

极限情况下2:

在这里插入图片描述

则A和B的结果都是6

如果redis客户端通过lua脚本把3个命令一次性发送给redis服务器,那么这三个指令就不会被其他客户端指令打断。Redis 也保证脚本会以原子性(atomic)的方式执行: 当某个脚本正在运行的时候,不会有其他脚本或 Redis 命令被执行。 这和使用 MULTI/ EXEC 包围的事务很类似。

但是MULTI/ EXEC方法来使用事务功能,将一组命令打包执行,无法进行业务逻辑的操作。这期间有某一条命令执行报错(例如给字符串自增),其他的命令还是会执行,并不会回滚。

2.4.2. lua介绍

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。

设计目的

​ 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。

Lua 特性

  • 轻量级:它用标准C语言编写并以源代码形式开放,编译后仅仅一百余K,可以很方便的嵌入别的程序里。
  • 可扩展:Lua提供了非常易于使用的扩展接口和机制:由宿主语言(通常是C或C++)提供这些功能,Lua可以使用它们,就像是本来就内置的功能一样。
  • 其它特性:
    • 支持面向过程(procedure-oriented)编程和函数式编程(functional programming);
    • 自动内存管理;只提供了一种通用类型的表(table),用它可以实现数组,哈希表,集合,对象;
    • 语言内置模式匹配;闭包(closure);函数也可以看做一个值;提供多线程(协同进程,并非操作系统所支持的线程)支持;
    • 通过闭包和table可以很方便地支持面向对象编程所需要的一些关键机制,比如数据抽象,虚函数,继承和重载等。

2.4.3. lua基本语法

对lua脚本感兴趣的同学,请移步到官方教程或者《菜鸟教程》。这里仅以redis中可能会用到的部分语法作介绍。

a = 5               -- 全局变量
local b = 5         -- 局部变量, redis只支持局部变量
a, b = 10, 2*x      -- 等价于       a=10; b=2*x

流程控制:

if( 布尔表达式 1)
then--[ 在布尔表达式 1 为 true 时执行该语句块 --]
elseif( 布尔表达式 2)
then--[ 在布尔表达式 2 为 true 时执行该语句块 --]
else --[ 如果以上布尔表达式都不为 true 则执行该语句块 --]
end

2.4.4. redis执行lua脚本 - EVAL指令

在redis中需要通过eval命令执行lua脚本。

格式:

EVAL script numkeys key [key ...] arg [arg ...]
script:lua脚本字符串,这段Lua脚本不需要(也不应该)定义函数。
numkeys:lua脚本中KEYS数组的大小
key [key ...]:KEYS数组中的元素
arg [arg ...]:ARGV数组中的元素

案例1:基本案例

EVAL "return 10" 0

输出:(integer) 10

案例2:动态传参

EVAL "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}" 5 10 20 30 40 50 60 70 80 90
# 输出:10 20 60 70EVAL "if KEYS[1] > ARGV[1] then return 1 else return 0 end" 1 10 20
# 输出:0EVAL "if KEYS[1] > ARGV[1] then return 1 else return 0 end" 1 20 10
# 输出:1

传入了两个参数10和20,KEYS的长度是1,所以KEYS中有一个元素10,剩余的一个20就是ARGV数组的元素。

redis.call()中的redis是redis中提供的lua脚本类库,仅在redis环境中可以使用该类库。

案例3:执行redis类库方法

set aaa 10  -- 设置一个aaa值为10
EVAL "return redis.call('get', 'aaa')" 0
# 通过return把call方法返回给redis客户端,打印:"10"

注意:**脚本里使用的所有键都应该由 KEYS 数组来传递。**但并不是强制性的,代价是这样写出的脚本不能被 Redis 集群所兼容。

案例4:给redis类库方法动态传参

EVAL "return redis.call('set', KEYS[1], ARGV[1])" 1 bbb 20

在这里插入图片描述

学到这里基本可以应付redis分布式锁所需要的脚本知识了。

案例5:pcall函数的使用(了解)

-- 当call() 在执行命令的过程中发生错误时,脚本会停止执行,并返回一个脚本错误,输出错误信息
EVAL "return redis.call('sets', KEYS[1], ARGV[1]), redis.call('set', KEYS[2], ARGV[2])" 2 bbb ccc 20 30
-- pcall函数不影响后续指令的执行
EVAL "return redis.pcall('sets', KEYS[1], ARGV[1]), redis.pcall('set', KEYS[2], ARGV[2])" 2 bbb ccc 20 30

注意:set方法写成了sets,肯定会报错。

在这里插入图片描述

2.5. 使用lua保证删除原子性

删除LUA脚本:

if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end

代码实现:

public void deduct() {String uuid = UUID.randomUUID().toString();// 加锁setnxwhile (!this.redisTemplate.opsForValue().setIfAbsent("lock", uuid, 3, TimeUnit.SECONDS)) {// 重试:循环try {Thread.sleep(50);} catch (InterruptedException e) {e.printStackTrace();}}try {// this.redisTemplate.expire("lock", 3, TimeUnit.SECONDS);// 1. 查询库存信息String stock = redisTemplate.opsForValue().get("stock").toString();// 2. 判断库存是否充足if (stock != null && stock.length() != 0) {Integer st = Integer.valueOf(stock);if (st > 0) {// 3.扣减库存redisTemplate.opsForValue().set("stock", String.valueOf(--st));}}} finally {// 先判断是否自己的锁,再解锁String script = "if redis.call('get', KEYS[1]) == ARGV[1] " +"then " +"   return redis.call('del', KEYS[1]) " +"else " +"   return 0 " +"end";this.redisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList("lock"), uuid);}
}

压力测试,库存量也没有问题,截图略过。。。

2.6. 可重入锁

由于上述加锁命令使用了 SETNX ,一旦键存在就无法再设置成功,这就导致后续同一线程内继续加锁,将会加锁失败。当一个线程执行一段代码成功获取锁之后,继续执行时,又遇到加锁的子任务代码,可重入性就保证线程能继续执行,而不可重入就是需要等待锁释放之后,再次获取锁成功,才能继续往下执行。

用一段 Java 代码解释可重入:

public synchronized void a() {b();
}public synchronized void b() {// pass
}

假设 X 线程在 a 方法获取锁之后,继续执行 b 方法,如果此时不可重入,线程就必须等待锁释放,再次争抢锁。

锁明明是被 X 线程拥有,却还需要等待自己释放锁,然后再去抢锁,这看起来就很奇怪,我释放我自己~

可重入性就可以解决这个尴尬的问题,当线程拥有锁之后,往后再遇到加锁方法,直接将加锁次数加 1,然后再执行方法逻辑。退出加锁方法之后,加锁次数再减 1,当加锁次数为 0 时,锁才被真正的释放。

可以看到可重入锁最大特性就是计数,计算加锁的次数。所以当可重入锁需要在分布式环境实现时,我们也就需要统计加锁次数。

解决方案:redis + Hash

2.6.1. 加锁脚本

Redis 提供了 Hash (哈希表)这种可以存储键值对数据结构。所以我们可以使用 Redis Hash 存储的锁的重入次数,然后利用 lua 脚本判断逻辑。

if (redis.call('exists', KEYS[1]) == 0 or redis.call('hexists', KEYS[1], ARGV[1]) == 1) 
thenredis.call('hincrby', KEYS[1], ARGV[1], 1);redis.call('expire', KEYS[1], ARGV[2]);return 1;
elsereturn 0;
end

假设值为:KEYS:[lock], ARGV[uuid, expire]

如果锁不存在或者这是自己的锁,就通过hincrby(不存在就新增并加1,存在就加1)获取锁或者锁次数加1。

2.6.2. 解锁脚本

-- 判断 hash set 可重入 key 的值是否等于 0
-- 如果为 nil 代表 自己的锁已不存在,在尝试解其他线程的锁,解锁失败
-- 如果为 0 代表 可重入次数被减 1
-- 如果为 1 代表 该可重入 key 解锁成功
if(redis.call('hexists', KEYS[1], ARGV[1]) == 0) then return nil; 
elseif(redis.call('hincrby', KEYS[1], ARGV[1], -1) > 0) then return 0; 
else redis.call('del', KEYS[1]); return 1; 
end;

2.6.3. 代码实现

由于加解锁代码量相对较多,这里可以封装成一个工具类:

在这里插入图片描述

DistributedLockClient工厂类具体实现:

@Component
public class DistributedLockClient {@Autowiredprivate StringRedisTemplate redisTemplate;private String uuid;public DistributedLockClient() {this.uuid = UUID.randomUUID().toString();}public DistributedRedisLock getRedisLock(String lockName){return new DistributedRedisLock(redisTemplate, lockName, uuid);}
}

DistributedRedisLock实现如下:

public class DistributedRedisLock implements Lock {private StringRedisTemplate redisTemplate;private String lockName;private String uuid;private long expire = 30;public DistributedRedisLock(StringRedisTemplate redisTemplate, String lockName, String uuid) {this.redisTemplate = redisTemplate;this.lockName = lockName;this.uuid = uuid;}@Overridepublic void lock() {this.tryLock();}@Overridepublic void lockInterruptibly() throws InterruptedException {}@Overridepublic boolean tryLock() {try {return this.tryLock(-1L, TimeUnit.SECONDS);} catch (InterruptedException e) {e.printStackTrace();}return false;}/*** 加锁方法* @param time* @param unit* @return* @throws InterruptedException*/@Overridepublic boolean tryLock(long time, TimeUnit unit) throws InterruptedException {if (time != -1){this.expire = unit.toSeconds(time);}String script = "if redis.call('exists', KEYS[1]) == 0 or redis.call('hexists', KEYS[1], ARGV[1]) == 1 " +"then " +"   redis.call('hincrby', KEYS[1], ARGV[1], 1) " +"   redis.call('expire', KEYS[1], ARGV[2]) " +"   return 1 " +"else " +"   return 0 " +"end";while (!this.redisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList(lockName), getId(), String.valueOf(expire))){Thread.sleep(50);}return true;}/*** 解锁方法*/@Overridepublic void unlock() {String script = "if redis.call('hexists', KEYS[1], ARGV[1]) == 0 " +"then " +"   return nil " +"elseif redis.call('hincrby', KEYS[1], ARGV[1], -1) == 0 " +"then " +"   return redis.call('del', KEYS[1]) " +"else " +"   return 0 " +"end";Long flag = this.redisTemplate.execute(new DefaultRedisScript<>(script, Long.class), Arrays.asList(lockName), getId());if (flag == null){throw new IllegalMonitorStateException("this lock doesn't belong to you!");}}@Overridepublic Condition newCondition() {return null;}/*** 给线程拼接唯一标识* @return*/String getId(){return uuid + ":" + Thread.currentThread().getId();}
}

2.6.4. 使用及测试

在业务代码中使用:

public void deduct() {DistributedRedisLock redisLock = this.distributedLockClient.getRedisLock("lock");redisLock.lock();try {// 1. 查询库存信息String stock = redisTemplate.opsForValue().get("stock").toString();// 2. 判断库存是否充足if (stock != null && stock.length() != 0) {Integer st = Integer.valueOf(stock);if (st > 0) {// 3.扣减库存redisTemplate.opsForValue().set("stock", String.valueOf(--st));}}} finally {redisLock.unlock();}
}

测试:

在这里插入图片描述

测试可重入性:

在这里插入图片描述

2.7. 自动续期

lua脚本:

if(redis.call('hexists', KEYS[1], ARGV[1]) == 1) then redis.call('expire', KEYS[1], ARGV[2]); return 1; 
else return 0; 
end

在RedisDistributeLock中添加renewExpire方法:

public class DistributedRedisLock implements Lock {private StringRedisTemplate redisTemplate;private String lockName;private String uuid;private long expire = 30;public DistributedRedisLock(StringRedisTemplate redisTemplate, String lockName, String uuid) {this.redisTemplate = redisTemplate;this.lockName = lockName;this.uuid = uuid + ":" + Thread.currentThread().getId();}@Overridepublic void lock() {this.tryLock();}@Overridepublic void lockInterruptibly() throws InterruptedException {}@Overridepublic boolean tryLock() {try {return this.tryLock(-1L, TimeUnit.SECONDS);} catch (InterruptedException e) {e.printStackTrace();}return false;}/*** 加锁方法* @param time* @param unit* @return* @throws InterruptedException*/@Overridepublic boolean tryLock(long time, TimeUnit unit) throws InterruptedException {if (time != -1){this.expire = unit.toSeconds(time);}String script = "if redis.call('exists', KEYS[1]) == 0 or redis.call('hexists', KEYS[1], ARGV[1]) == 1 " +"then " +"   redis.call('hincrby', KEYS[1], ARGV[1], 1) " +"   redis.call('expire', KEYS[1], ARGV[2]) " +"   return 1 " +"else " +"   return 0 " +"end";while (!this.redisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList(lockName), uuid, String.valueOf(expire))){Thread.sleep(50);}// 加锁成功,返回之前,开启定时器自动续期this.renewExpire();return true;}/*** 解锁方法*/@Overridepublic void unlock() {String script = "if redis.call('hexists', KEYS[1], ARGV[1]) == 0 " +"then " +"   return nil " +"elseif redis.call('hincrby', KEYS[1], ARGV[1], -1) == 0 " +"then " +"   return redis.call('del', KEYS[1]) " +"else " +"   return 0 " +"end";Long flag = this.redisTemplate.execute(new DefaultRedisScript<>(script, Long.class), Arrays.asList(lockName), uuid);if (flag == null){throw new IllegalMonitorStateException("this lock doesn't belong to you!");}}@Overridepublic Condition newCondition() {return null;}// String getId(){//     return this.uuid + ":" + Thread.currentThread().getId();// }private void renewExpire(){String script = "if redis.call('hexists', KEYS[1], ARGV[1]) == 1 " +"then " +"   return redis.call('expire', KEYS[1], ARGV[2]) " +"else " +"   return 0 " +"end";new Timer().schedule(new TimerTask() {@Overridepublic void run() {if (redisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList(lockName), uuid, String.valueOf(expire))) {renewExpire();}}}, this.expire * 1000 / 3);}
}

在tryLock方法中使用:

在这里插入图片描述

构造方法作如下修改:

在这里插入图片描述

解锁方法作如下修改:

在这里插入图片描述

2.8. 手写分步式锁小结

特征:

  1. 独占排他:setnx

  2. 防死锁:

    redis客户端程序获取到锁之后,立马宕机。给锁添加过期时间

    不可重入:可重入

  3. 防误删:

    先判断是否自己的锁才能删除

  4. 原子性:

    加锁和过期时间之间:set k v ex 3 nx

    判断和释放锁之间:lua脚本

  5. 可重入性:hash(key field value) + lua脚本

  6. 自动续期:Timer定时器 + lua脚本

  7. 在集群情况下,导致锁机制失效:

    1. 客户端程序10010,从主中获取锁
    2. 从还没来得及同步数据,主挂了
    3. 于是从升级为主
    4. 客户端程序10086就从新主中获取到锁,导致锁机制失效

锁操作:

加锁:

  1. setnx:独占排他 死锁、不可重入、原子性

  2. set k v ex 30 nx:独占排他、死锁 不可重入

  3. hash + lua脚本:可重入锁

    1. 判断锁是否被占用(exists),如果没有被占用则直接获取锁(hset/hincrby)并设置过期时间(expire)
    2. 如果锁被占用,则判断是否当前线程占用的(hexists),如果是则重入(hincrby)并重置过期时间(expire)
    3. 否则获取锁失败,将来代码中重试
  4. Timer定时器 + lua脚本:实现锁的自动续期

    判断锁是否自己的锁(hexists == 1),如果是自己的锁则执行expire重置过期时间

解锁

  1. del:导致误删
  2. 先判断再删除同时保证原子性:lua脚本
  3. hash + lua脚本:可重入
    1. 判断当前线程的锁是否存在,不存在则返回nil,将来抛出异常
    2. 存在则直接减1(hincrby -1),判断减1后的值是否为0,为0则释放锁(del),并返回1
    3. 不为0,则返回0

重试:递归 循环

2.9. 红锁算法

redis集群状态下的问题:

  1. 客户端A从master获取到锁
  2. 在master将锁同步到slave之前,master宕掉了。
  3. slave节点被晋级为master节点
  4. 客户端B取得了同一个资源被客户端A已经获取到的另外一个锁。

安全失效

解决集群下锁失效,参照redis官方网站针对redlock文档:https://redis.io/topics/distlock

在算法的分布式版本中,我们假设有N个Redis服务器。这些节点是完全独立的,因此我们不使用复制或任何其他隐式协调系统。**前几节已经描述了如何在单个实例中安全地获取和释放锁,在分布式锁算法中,将使用相同的方法在单个实例中获取和释放锁。**将N设置为5是一个合理的值,因此需要在不同的计算机或虚拟机上运行5个Redis主服务器,确保它们以独立的方式发生故障。

为了获取锁,客户端执行以下操作:

  1. 客户端以毫秒为单位获取当前时间的时间戳,作为起始时间
  2. 客户端尝试在所有N个实例中顺序使用相同的键名、相同的随机值来获取锁定。每个实例尝试获取锁都需要时间,客户端应该设置一个远小于总锁定时间的超时时间。例如,如果自动释放时间为10秒,则尝试获取锁的超时时间可能在5到50毫秒之间。这样可以防止客户端长时间与处于故障状态的Redis节点进行通信:如果某个实例不可用,尽快尝试与下一个实例进行通信。
  3. 客户端获取当前时间 减去在步骤1中获得的起始时间,来计算获取锁所花费的时间。当且仅当客户端能够在大多数实例(至少3个)中获取锁时,并且获取锁所花费的总时间小于锁有效时间,则认为已获取锁。
  4. 如果获取了锁,则将锁有效时间减去 获取锁所花费的时间,如步骤3中所计算。
  5. 如果客户端由于某种原因(无法锁定N / 2 + 1个实例或有效时间为负)而未能获得该锁,它将尝试解锁所有实例(即使没有锁定成功的实例)。

每台计算机都有一个本地时钟,我们通常可以依靠不同的计算机来产生很小的时钟漂移。只有在拥有锁的客户端将在锁有效时间内(如步骤3中获得的)减去一段时间(仅几毫秒)的情况下终止工作,才能保证这一点。以补偿进程之间的时钟漂移

当客户端无法获取锁时,它应该在随机延迟后重试,以避免同时获取同一资源的多个客户端之间不同步(这可能会导致脑裂的情况:没人胜)。同样,客户端在大多数Redis实例中尝试获取锁的速度越快,出现裂脑情况(以及需要重试)的窗口就越小,因此理想情况下,客户端应尝试将SET命令发送到N个实例同时使用多路复用。

值得强调的是,对于未能获得大多数锁的客户端,尽快释放(部分)获得的锁有多么重要,这样就不必等待锁定期满才能再次获得锁(但是,如果发生了网络分区,并且客户端不再能够与Redis实例进行通信,则在等待密钥到期时需要付出可用性损失)。

2.10. redisson中的分布式锁

在这里插入图片描述

​ Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务。其中包括(BitSet, Set, Multimap, SortedSet, Map, List, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, AtomicLong, CountDownLatch, Publish / Subscribe, Bloom filter, Remote service, Spring cache, Executor service, Live Object service, Scheduler service) Redisson提供了使用Redis的最简单和最便捷的方法。Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。

在这里插入图片描述

官方文档地址:https://github.com/redisson/redisson/wiki

2.10.1. 可重入锁(Reentrant Lock)

基于Redis的Redisson分布式可重入锁RLock Java对象实现了java.util.concurrent.locks.Lock接口。

大家都知道,如果负责储存这个分布式锁的Redisson节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。

RLock对象完全符合Java的Lock规范。也就是说只有拥有锁的进程才能解锁,其他进程解锁则会抛出IllegalMonitorStateException错误。

另外Redisson还通过加锁的方法提供了leaseTime的参数来指定加锁的时间。超过这个时间后锁便自动解开了。

RLock lock = redisson.getLock("anyLock");
// 最常见的使用方法
lock.lock();// 加锁以后10秒钟自动解锁
// 无需调用unlock方法手动解锁
lock.lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS);
if (res) {try {...} finally {lock.unlock();}
}
  1. 引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.11.2</version>
</dependency>
  1. 添加配置
@Configuration
public class RedissonConfig {@Beanpublic RedissonClient redissonClient(){Config config = new Config();// 可以用"rediss://"来启用SSL连接config.useSingleServer().setAddress("redis://172.16.116.100:6379");return Redisson.create(config);}
}
  1. 代码中使用
@Autowired
private RedissonClient redissonClient;public void checkAndLock() {// 加锁,获取锁失败重试RLock lock = this.redissonClient.getLock("lock");lock.lock();// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}// 释放锁lock.unlock();
}
  1. 压力测试

性能跟我们手写的区别不大。

在这里插入图片描述

数据库也没有问题

2.10.2. 公平锁(Fair Lock)

基于Redis的Redisson分布式可重入公平锁也是实现了java.util.concurrent.locks.Lock接口的一种RLock对象。同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。它保证了当多个Redisson客户端线程同时请求加锁时,优先分配给先发出请求的线程。所有请求线程会在一个队列中排队,当某个线程出现宕机时,Redisson会等待5秒后继续下一个线程,也就是说如果前面有5个线程都处于等待状态,那么后面的线程会等待至少25秒。

RLock fairLock = redisson.getFairLock("anyLock");
// 最常见的使用方法
fairLock.lock();// 10秒钟以后自动解锁
// 无需调用unlock方法手动解锁
fairLock.lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = fairLock.tryLock(100, 10, TimeUnit.SECONDS);
fairLock.unlock();

2.10.3. 联锁(MultiLock)

基于Redis的Redisson分布式联锁RedissonMultiLock对象可以将多个RLock对象关联为一个联锁,每个RLock对象实例可以来自于不同的Redisson实例。

RLock lock1 = redissonInstance1.getLock("lock1");
RLock lock2 = redissonInstance2.getLock("lock2");
RLock lock3 = redissonInstance3.getLock("lock3");RedissonMultiLock lock = new RedissonMultiLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 所有的锁都上锁成功才算成功。
lock.lock();
...
lock.unlock();

2.10.4. 红锁(RedLock)

基于Redis的Redisson红锁RedissonRedLock对象实现了Redlock介绍的加锁算法。该对象也可以用来将多个RLock对象关联为一个红锁,每个RLock对象实例可以来自于不同的Redisson实例。

RLock lock1 = redissonInstance1.getLock("lock1");
RLock lock2 = redissonInstance2.getLock("lock2");
RLock lock3 = redissonInstance3.getLock("lock3");RedissonRedLock lock = new RedissonRedLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 红锁在大部分节点上加锁成功就算成功。
lock.lock();
...
lock.unlock();

2.10.5. 读写锁(ReadWriteLock)

基于Redis的Redisson分布式可重入读写锁RReadWriteLock Java对象实现了java.util.concurrent.locks.ReadWriteLock接口。其中读锁和写锁都继承了RLock接口。

分布式可重入读写锁允许同时有多个读锁和一个写锁处于加锁状态。

RReadWriteLock rwlock = redisson.getReadWriteLock("anyRWLock");
// 最常见的使用方法
rwlock.readLock().lock();
// 或
rwlock.writeLock().lock();// 10秒钟以后自动解锁
// 无需调用unlock方法手动解锁
rwlock.readLock().lock(10, TimeUnit.SECONDS);
// 或
rwlock.writeLock().lock(10, TimeUnit.SECONDS);// 尝试加锁,最多等待100秒,上锁以后10秒自动解锁
boolean res = rwlock.readLock().tryLock(100, 10, TimeUnit.SECONDS);
// 或
boolean res = rwlock.writeLock().tryLock(100, 10, TimeUnit.SECONDS);
...
lock.unlock();

添加StockController方法:

@GetMapping("test/read")
public String testRead(){String msg = stockService.testRead();return "测试读";
}@GetMapping("test/write")
public String testWrite(){String msg = stockService.testWrite();return "测试写";
}

添加StockService方法:

public String testRead() {RReadWriteLock rwLock = this.redissonClient.getReadWriteLock("rwLock");rwLock.readLock().lock(10, TimeUnit.SECONDS);System.out.println("测试读锁。。。。");// rwLock.readLock().unlock();return null;
}public String testWrite() {RReadWriteLock rwLock = this.redissonClient.getReadWriteLock("rwLock");rwLock.writeLock().lock(10, TimeUnit.SECONDS);System.out.println("测试写锁。。。。");// rwLock.writeLock().unlock();return null;
}

打开开两个浏览器窗口测试:

  • 同时访问写:一个写完之后,等待一会儿(约10s),另一个写开始
  • 同时访问读:不用等待
  • 先写后读:读要等待(约10s)写完成
  • 先读后写:写要等待(约10s)读完成

2.10.6. 信号量(Semaphore)

基于Redis的Redisson的分布式信号量(Semaphore)Java对象RSemaphore采用了与java.util.concurrent.Semaphore相似的接口和用法。同时还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。

RSemaphore semaphore = redisson.getSemaphore("semaphore");
semaphore.trySetPermits(3);
semaphore.acquire();
semaphore.release();

在StockController添加方法:

@GetMapping("test/semaphore")
public String testSemaphore(){this.stockService.testSemaphore();return "测试信号量";
}

在StockService添加方法:

public void testSemaphore() {RSemaphore semaphore = this.redissonClient.getSemaphore("semaphore");semaphore.trySetPermits(3);try {semaphore.acquire();TimeUnit.SECONDS.sleep(5);System.out.println(System.currentTimeMillis());semaphore.release();} catch (InterruptedException e) {e.printStackTrace();}
}

添加测试用例:并发10次,循环一次

在这里插入图片描述

控制台效果:

控制台11606960790234
1606960800337
1606960800443
1606960805248控制台21606960790328
1606960795332
1606960800245控制台31606960790433
1606960795238
1606960795437

由此可知:

1606960790秒有3次请求进来:每个控制台各1次

1606960795秒有3次请求进来:控制台2有1次,控制台3有2次

1606960800秒有3次请求进来:控制台1有2次,控制台2有1次

1606960805秒有1次请求进来:控制台1有1次

2.10.7. 闭锁(CountDownLatch)

基于Redisson的Redisson分布式闭锁(CountDownLatch)Java对象RCountDownLatch采用了与java.util.concurrent.CountDownLatch相似的接口和用法。

RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.trySetCount(1);
latch.await();// 在其他线程或其他JVM里
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.countDown();

需要两个方法:一个等待,一个计数countDown

给StockController添加测试方法:

@GetMapping("test/latch")
public String testLatch(){this.stockService.testLatch();return "班长锁门。。。";
}@GetMapping("test/countdown")
public String testCountDown(){this.stockService.testCountDown();return "出来了一位同学";
}

给StockService添加测试方法:

public void testLatch() {RCountDownLatch latch = this.redissonClient.getCountDownLatch("latch");latch.trySetCount(6);try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}
}public void testCountDown() {RCountDownLatch latch = this.redissonClient.getCountDownLatch("latch");latch.trySetCount(6);latch.countDown();
}

重启测试,打开两个页面:当第二个请求执行6次之后,第一个请求才会执行。

在这里插入图片描述

3. 基于zookeeper实现分布式锁

实现分布式锁目前有三种流行方案,分别为基于数据库、Redis、Zookeeper的方案。这里主要介绍基于zk怎么实现分布式锁。在实现分布式锁之前,先回顾zookeeper的相关知识点

在这里插入图片描述

3.1. 知识点回顾

3.1.1. 安装启动

安装:把zk安装包上传到/opt目录下,并切换到/opt目录下,执行以下指令

# 解压
tar -zxvf zookeeper-3.7.0-bin.tar.gz
# 重命名
mv apache-zookeeper-3.7.0-bin/ zookeeper
# 打开zookeeper根目录
cd /opt/zookeeper
# 创建一个数据目录,备用
mkdir data
# 打开zk的配置目录
cd /opt/zookeeper/conf
# copy配置文件,zk启动时会加载zoo.cfg文件
cp zoo_sample.cfg zoo.cfg
# 编辑配置文件
vim zoo.cfg
# 修改dataDir参数为之前创建的数据目录:/opt/zookeeper/data
# 切换到bin目录
cd /opt/zookeeper/bin
# 启动 
./zkServer.sh start
./zkServer.sh status # 查看启动状态
./zkServer.sh stop # 停止
./zkServer.sh restart # 重启
./zkCli.sh # 查看zk客户端

如下,说明启动成功:

在这里插入图片描述

3.1.2. 相关概念

Zookeeper提供一个多层级的节点命名空间(节点称为znode),每个节点都用一个以斜杠(/)分隔的路径表示,而且每个节点都有父节点(根节点除外),非常类似于文件系统。并且每个节点都是唯一的。

znode节点有四种类型:

  • PERSISTENT:永久节点。客户端与zookeeper断开连接后,该节点依旧存在
  • EPHEMERAL:临时节点。客户端与zookeeper断开连接后,该节点被删除
  • PERSISTENT_SEQUENTIAL:永久节点、序列化。客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号
  • EPHEMERAL_SEQUENTIAL:临时节点、序列化。客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号

创建这四种节点:

[zk: localhost:2181(CONNECTED) 0] create /aa test  # 创建持久化节点
Created /aa
[zk: localhost:2181(CONNECTED) 1] create -s /bb test  # 创建持久序列化节点
Created /bb0000000001
[zk: localhost:2181(CONNECTED) 2] create -e /cc test  # 创建临时节点
Created /cc
[zk: localhost:2181(CONNECTED) 3] create -e -s /dd test  # 创建临时序列化节点
Created /dd0000000003
[zk: localhost:2181(CONNECTED) 4] ls /   # 查看某个节点下的子节点
[aa, bb0000000001, cc, dd0000000003, zookeeper]
[zk: localhost:2181(CONNECTED) 5] stat /  # 查看某个节点的状态
cZxid = 0x0
ctime = Thu Jan 01 08:00:00 CST 1970
mZxid = 0x0
mtime = Thu Jan 01 08:00:00 CST 1970
pZxid = 0x5
cversion = 3
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 0
numChildren = 5
[zk: localhost:2181(CONNECTED) 6] get /aa  # 查看某个节点的内容
test
[zk: localhost:2181(CONNECTED) 11] delete /aa  # 删除某个节点
[zk: localhost:2181(CONNECTED) 7] ls /  # 再次查看
[bb0000000001, cc, dd0000000003, zookeeper]

事件监听:在读取数据时,我们可以同时对节点设置事件监听,当节点数据或结构变化时,zookeeper会通知客户端。当前zookeeper针对节点的监听有如下四种事件:

  1. 节点创建:stat -w /xx

    当/xx节点创建时:NodeCreated

  2. 节点删除:stat -w /xx

    当/xx节点删除时:NodeDeleted

  3. 节点数据修改:get -w /xx

    当/xx节点数据发生变化时:NodeDataChanged

  4. 子节点变更:ls -w /xx

    当/xx节点的子节点创建或者删除时:NodeChildChanged

3.1.3. java客户端

ZooKeeper的java客户端有:原生客户端、ZkClient、Curator框架(类似于redisson,有很多功能性封装)。

  1. 引入依赖
<dependency><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId><version>3.7.0</version>
</dependency>
  1. 常用api及其方法
public class ZkTest {public static void main(String[] args) throws KeeperException, InterruptedException {// 获取zookeeper链接CountDownLatch countDownLatch = new CountDownLatch(1);ZooKeeper zooKeeper = null;try {zooKeeper = new ZooKeeper("172.16.116.100:2181", 30000, new Watcher() {@Overridepublic void process(WatchedEvent event) {if (Event.KeeperState.SyncConnected.equals(event.getState()) && Event.EventType.None.equals(event.getType())) {System.out.println("获取链接成功。。。。。。" + event);countDownLatch.countDown();}}});countDownLatch.await();} catch (Exception e) {e.printStackTrace();}// 创建一个节点,1-节点路径 2-节点内容 3-节点的访问权限 4-节点类型// OPEN_ACL_UNSAFE:任何人可以操作该节点// CREATOR_ALL_ACL:创建者拥有所有访问权限// READ_ACL_UNSAFE: 任何人都可以读取该节点// zooKeeper.create("/atguigu/aa", "haha~~".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);zooKeeper.create("/test", "haha~~".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);// zooKeeper.create("/atguigu/cc", "haha~~".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT_SEQUENTIAL);// zooKeeper.create("/atguigu/dd", "haha~~".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);// zooKeeper.create("/atguigu/dd", "haha~~".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);// zooKeeper.create("/atguigu/dd", "haha~~".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);// 判断节点是否存在Stat stat = zooKeeper.exists("/test", true);if (stat != null){System.out.println("当前节点存在!" + stat.getVersion());} else {System.out.println("当前节点不存在!");}// 判断节点是否存在,同时添加监听zooKeeper.exists("/test", event -> {});// 获取一个节点的数据byte[] data = zooKeeper.getData("/atguigu/ss0000000001", false, null);System.out.println(new String(data));// 查询一个节点的所有子节点List<String> children = zooKeeper.getChildren("/test", false);System.out.println(children);// 更新zooKeeper.setData("/test", "wawa...".getBytes(), stat.getVersion());// 删除一个节点//zooKeeper.delete("/test", -1);if (zooKeeper != null){zooKeeper.close();}}
}

3.2. 思路分析

分布式锁的步骤:

  1. 获取锁:create一个节点
  2. 删除锁:delete一个节点
  3. 重试:没有获取到锁的请求重试

参照redis分布式锁的特点:

  1. 互斥 排他
  2. 防死锁:
    1. 可自动释放锁(临时节点) :获得锁之后客户端所在机器宕机了,客户端没有主动删除子节点;如果创建的是永久的节点,那么这个锁永远不会释放,导致死锁;由于创建的是临时节点,客户端宕机后,过了一定时间zookeeper没有收到客户端的心跳包判断会话失效,将临时节点删除从而释放锁。
    2. 可重入锁:借助于ThreadLocal
  3. 防误删:宕机自动释放临时节点,不需要设置过期时间,也就不存在误删问题。
  4. 加锁/解锁要具备原子性
  5. 单点问题:使用Zookeeper可以有效的解决单点问题,ZK一般是集群部署的。
  6. 集群问题:zookeeper集群是强一致性的,只要集群中有半数以上的机器存活,就可以对外提供服务。

3.3. 基本实现

实现思路:

  1. 多个请求同时添加一个相同的临时节点,只有一个可以添加成功。添加成功的获取到锁
  2. 执行业务逻辑
  3. 完成业务流程后,删除节点释放锁。

由于zookeeper获取链接是一个耗时过程,这里可以在项目启动时,初始化链接,并且只初始化一次。借助于spring特性,代码实现如下:

@Component
public class ZkClient {private static final String connectString = "172.16.116.100:2181";private static final String ROOT_PATH = "/distributed";private ZooKeeper zooKeeper;@PostConstructpublic void init(){try {// 连接zookeeper服务器this.zooKeeper = new ZooKeeper(connectString, 30000, new Watcher() {@Overridepublic void process(WatchedEvent event) {System.out.println("获取链接成功!!");}});// 创建分布式锁根节点if (this.zooKeeper.exists(ROOT_PATH, false) == null){this.zooKeeper.create(ROOT_PATH, null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);}} catch (Exception e) {System.out.println("获取链接失败!");e.printStackTrace();}}@PreDestroypublic void destroy(){try {if (zooKeeper != null){zooKeeper.close();}} catch (InterruptedException e) {e.printStackTrace();}}/*** 初始化zk分布式锁对象方法* @param lockName* @return*/public ZkDistributedLock getZkDistributedLock(String lockName){return new ZkDistributedLock(zooKeeper, lockName);}
}

zk分布式锁具体实现:

public class ZkDistributedLock {private static final String ROOT_PATH = "/distributed";private String path;private ZooKeeper zooKeeper;public ZkDistributedLock(ZooKeeper zooKeeper, String lockName){this.zooKeeper = zooKeeper;this.path = ROOT_PATH + "/" + lockName;}public void lock(){try {zooKeeper.create(path, null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);} catch (Exception e) {// 重试try {Thread.sleep(200);lock();} catch (InterruptedException ex) {ex.printStackTrace();}}}public void unlock(){try {this.zooKeeper.delete(path, 0);} catch (InterruptedException e) {e.printStackTrace();} catch (KeeperException e) {e.printStackTrace();}}
}

改造StockService的checkAndLock方法:

@Autowired
private ZkClient client;public void checkAndLock() {// 加锁,获取锁失败重试ZkDistributedLock lock = this.client.getZkDistributedLock("lock");lock.lock();// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}// 释放锁lock.unlock();
}

Jmeter压力测试:

在这里插入图片描述

性能一般,mysql数据库的库存余量为0(注意:所有测试之前都要先修改库存量为5000)

基本实现存在的问题:

  1. 性能一般(比mysql分布式锁略好)
  2. 不可重入

接下来首先来提高性能

3.4. 优化:性能优化

基本实现中由于无限自旋影响性能:

在这里插入图片描述

试想:每个请求要想正常的执行完成,最终都是要创建节点,如果能够避免争抢必然可以提高性能。

这里借助于zk的临时序列化节点,实现分布式锁:

在这里插入图片描述

3.4.1. 实现阻塞锁

代码实现:

public class ZkDistributedLock {private static final String ROOT_PATH = "/distributed";private String path;private ZooKeeper zooKeeper;public ZkDistributedLock(ZooKeeper zooKeeper, String lockName){try {this.zooKeeper = zooKeeper;this.path = zooKeeper.create(ROOT_PATH + "/" + lockName + "-", null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}}public void lock(){String preNode = getPreNode(path);// 如果该节点没有前一个节点,说明该节点时最小节点,放行执行业务逻辑if (StringUtils.isEmpty(preNode)){return ;}// 重新检查。是否获取到锁try {Thread.sleep(20);} catch (InterruptedException ex) {ex.printStackTrace();}lock();}public void unlock(){try {this.zooKeeper.delete(path, 0);} catch (InterruptedException e) {e.printStackTrace();} catch (KeeperException e) {e.printStackTrace();}}/*** 获取指定节点的前节点* @param path* @return*/private String getPreNode(String path){try {// 获取当前节点的序列化号Long curSerial = Long.valueOf(StringUtils.substringAfterLast(path, "-"));// 获取根路径下的所有序列化子节点List<String> nodes = this.zooKeeper.getChildren(ROOT_PATH, false);// 判空if (CollectionUtils.isEmpty(nodes)){return null;}// 获取前一个节点Long flag = 0L;String preNode = null;for (String node : nodes) {// 获取每个节点的序列化号Long serial = Long.valueOf(StringUtils.substringAfterLast(node, "-"));if (serial < curSerial && serial > flag){flag = serial;preNode = node;}}return preNode;} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}return null;}
}

主要修改了构造方法和lock方法:

在这里插入图片描述

并添加了getPreNode获取前置节点的方法。

测试结果如下:

在这里插入图片描述

性能反而更弱了。

原因:虽然不用反复争抢创建节点了,但是会自旋判断自己是最小的节点,这个判断逻辑反而更复杂更耗时。

解决方案:监听。

3.4.2. 监听实现阻塞锁

对于这个算法有个极大的优化点:假如当前有1000个节点在等待锁,如果获得锁的客户端释放锁时,这1000个客户端都会被唤醒,这种情况称为“羊群效应”;在这种羊群效应中,zookeeper需要通知1000个客户端,这会阻塞其他的操作,最好的情况应该只唤醒新的最小节点对应的客户端。应该怎么做呢?在设置事件监听时,每个客户端应该对刚好在它之前的子节点设置事件监听,例如子节点列表为/locks/lock-0000000000、/locks/lock-0000000001、/locks/lock-0000000002,序号为1的客户端监听序号为0的子节点删除消息,序号为2的监听序号为1的子节点删除消息。

所以调整后的分布式锁算法流程如下:

  • 客户端连接zookeeper,并在/lock下创建临时的且有序的子节点,第一个客户端对应的子节点为/locks/lock-0000000000,第二个为/locks/lock-0000000001,以此类推;
  • 客户端获取/lock下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;
  • 执行业务代码;
  • 完成业务流程后,删除对应的子节点释放锁。

改造ZkDistributedLock的lock方法:

public void lock(){try {String preNode = getPreNode(path);// 如果该节点没有前一个节点,说明该节点时最小节点,放行执行业务逻辑if (StringUtils.isEmpty(preNode)){return ;} else {CountDownLatch countDownLatch = new CountDownLatch(1);if (this.zooKeeper.exists(ROOT_PATH + "/" + preNode, new Watcher(){@Overridepublic void process(WatchedEvent event) {countDownLatch.countDown();}}) == null) {return;}// 阻塞。。。。countDownLatch.await();return;}} catch (Exception e) {e.printStackTrace();// 重新检查。是否获取到锁try {Thread.sleep(200);} catch (InterruptedException ex) {ex.printStackTrace();}lock();}
}

压力测试效果如下:

在这里插入图片描述

由此可见性能提高不少,接近于redis的分布式锁

3.5. 优化:可重入锁

引入ThreadLocal线程局部变量保证zk分布式锁的可重入性。

public class ZkDistributedLock {private static final String ROOT_PATH = "/distributed";private static final ThreadLocal<Integer> THREAD_LOCAL = new ThreadLocal<>();private String path;private ZooKeeper zooKeeper;public ZkDistributedLock(ZooKeeper zooKeeper, String lockName){try {this.zooKeeper = zooKeeper;if (THREAD_LOCAL.get() == null || THREAD_LOCAL.get() == 0){this.path = zooKeeper.create(ROOT_PATH + "/" + lockName + "-", null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);}} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}}public void lock(){Integer flag = THREAD_LOCAL.get();if (flag != null && flag > 0) {THREAD_LOCAL.set(flag + 1);return;}try {String preNode = getPreNode(path);// 如果该节点没有前一个节点,说明该节点时最小节点,放行执行业务逻辑if (StringUtils.isEmpty(preNode)){THREAD_LOCAL.set(1);return ;} else {CountDownLatch countDownLatch = new CountDownLatch(1);if (this.zooKeeper.exists(ROOT_PATH + "/" + preNode, new Watcher(){@Overridepublic void process(WatchedEvent event) {countDownLatch.countDown();}}) == null) {THREAD_LOCAL.set(1);return;}// 阻塞。。。。countDownLatch.await();THREAD_LOCAL.set(1);return;}} catch (Exception e) {e.printStackTrace();// 重新检查。是否获取到锁try {Thread.sleep(200);} catch (InterruptedException ex) {ex.printStackTrace();}lock();}}public void unlock(){try {THREAD_LOCAL.set(THREAD_LOCAL.get() - 1);if (THREAD_LOCAL.get() == 0) {this.zooKeeper.delete(path, 0);THREAD_LOCAL.remove();}} catch (InterruptedException e) {e.printStackTrace();} catch (KeeperException e) {e.printStackTrace();}}/*** 获取指定节点的前节点* @param path* @return*/private String getPreNode(String path){try {// 获取当前节点的序列化号Long curSerial = Long.valueOf(StringUtils.substringAfterLast(path, "-"));// 获取根路径下的所有序列化子节点List<String> nodes = this.zooKeeper.getChildren(ROOT_PATH, false);// 判空if (CollectionUtils.isEmpty(nodes)){return null;}// 获取前一个节点Long flag = 0L;String preNode = null;for (String node : nodes) {// 获取每个节点的序列化号Long serial = Long.valueOf(StringUtils.substringAfterLast(node, "-"));if (serial < curSerial && serial > flag){flag = serial;preNode = node;}}return preNode;} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}return null;}
}

3.6. zk分布式锁小结

参照redis分布式锁的特点:

  1. 互斥 排他:zk节点的不可重复性,以及序列化节点的有序性
  2. 防死锁:
    1. 可自动释放锁:临时节点
    2. 可重入锁:借助于ThreadLocal
  3. 防误删:临时节点
  4. 加锁/解锁要具备原子性
  5. 单点问题:使用Zookeeper可以有效的解决单点问题,ZK一般是集群部署的。
  6. 集群问题:zookeeper集群是强一致性的,只要集群中有半数以上的机器存活,就可以对外提供服务。
  7. 公平锁:有序性节点

3.7. Curator中的分布式锁

Curator是netflix公司开源的一套zookeeper客户端,目前是Apache的顶级项目。与Zookeeper提供的原生客户端相比,Curator的抽象层次更高,简化了Zookeeper客户端的开发量。Curator解决了很多zookeeper客户端非常底层的细节开发工作,包括连接重连、反复注册wathcer和NodeExistsException 异常等。

通过查看官方文档,可以发现Curator主要解决了三类问题:

  • 封装ZooKeeper client与ZooKeeper server之间的连接处理
  • 提供了一套Fluent风格的操作API
  • 提供ZooKeeper各种应用场景(recipe, 比如:分布式锁服务、集群领导选举、共享计数器、缓存机制、分布式队列等)的抽象封装,这些实现都遵循了zk的最佳实践,并考虑了各种极端情况

Curator由一系列的模块构成,对于一般开发者而言,常用的是curator-framework和curator-recipes:

  • curator-framework:提供了常见的zk相关的底层操作
  • curator-recipes:提供了一些zk的典型使用场景的参考。本节重点关注的分布式锁就是该包提供的

引入依赖:

最新版本的curator 4.3.0支持zookeeper 3.4.x和3.5,但是需要注意curator传递进来的依赖,需要和实际服务器端使用的版本相符,以我们目前使用的zookeeper 3.4.14为例。

<dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</artifactId><version>4.3.0</version><exclusions><exclusion><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId></exclusion></exclusions>
</dependency>
<dependency><groupId>org.apache.curator</groupId><artifactId>curator-recipes</artifactId><version>4.3.0</version><exclusions><exclusion><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId></exclusion></exclusions>
</dependency>
<dependency><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId><version>3.4.14</version>
</dependency>

添加curator客户端配置:

@Configuration
public class CuratorConfig {@Beanpublic CuratorFramework curatorFramework(){// 重试策略,这里使用的是指数补偿重试策略,重试3次,初始重试间隔1000ms,每次重试之后重试间隔递增。RetryPolicy retry = new ExponentialBackoffRetry(1000, 3);// 初始化Curator客户端:指定链接信息 及 重试策略CuratorFramework client = CuratorFrameworkFactory.newClient("172.16.116.100:2181", retry);client.start(); // 开始链接,如果不调用该方法,很多方法无法工作return client;}
}

3.7.1. 可重入锁InterProcessMutex

Reentrant和JDK的ReentrantLock类似, 意味着同一个客户端在拥有锁的同时,可以多次获取,不会被阻塞。它是由类InterProcessMutex来实现。

// 常用构造方法
public InterProcessMutex(CuratorFramework client, String path)
// 获取锁
public void acquire();
// 带超时时间的可重入锁
public boolean acquire(long time, TimeUnit unit);
// 释放锁
public void release();
3.7.1.1. 使用案例

改造service测试方法:

@Autowired
private CuratorFramework curatorFramework;public void checkAndLock() {InterProcessMutex mutex = new InterProcessMutex(curatorFramework, "/curator/lock");try {// 加锁mutex.acquire();// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}// this.testSub(mutex);// 释放锁mutex.release();} catch (Exception e) {e.printStackTrace();}
}public void testSub(InterProcessMutex mutex) {try {mutex.acquire();System.out.println("测试可重入锁。。。。");mutex.release();} catch (Exception e) {e.printStackTrace();}
}

注意:如想重入,则需要使用同一个InterProcessMutex对象。

压力测试结果:

在这里插入图片描述

3.7.1.2. 底层原理

3.7.2. 不可重入锁InterProcessSemaphoreMutex

具体实现:InterProcessSemaphoreMutex。与InterProcessMutex调用方法类似,区别在于该锁是不可重入的,在同一个线程中不可重入。

public InterProcessSemaphoreMutex(CuratorFramework client, String path);
public void acquire();
public boolean acquire(long time, TimeUnit unit);
public void release();

案例:

@Autowired
private CuratorFramework curatorFramework;public void deduct() {InterProcessSemaphoreMutex mutex = new InterProcessSemaphoreMutex(curatorFramework, "/curator/lock");try {mutex.acquire();// 1. 查询库存信息String stock = redisTemplate.opsForValue().get("stock").toString();// 2. 判断库存是否充足if (stock != null && stock.length() != 0) {Integer st = Integer.valueOf(stock);if (st > 0) {// 3.扣减库存redisTemplate.opsForValue().set("stock", String.valueOf(--st));}}} catch (Exception e) {e.printStackTrace();} finally {try {mutex.release();} catch (Exception e) {e.printStackTrace();}}
}

3.7.3. 可重入读写锁InterProcessReadWriteLock

类似JDK的ReentrantReadWriteLock。一个拥有写锁的线程可重入读锁,但是读锁却不能进入写锁。这也意味着写锁可以降级成读锁。从读锁升级成写锁是不成的。主要实现类InterProcessReadWriteLock:

// 构造方法
public InterProcessReadWriteLock(CuratorFramework client, String basePath);
// 获取读锁对象
InterProcessMutex readLock();
// 获取写锁对象
InterProcessMutex writeLock();

注意:写锁在释放之前会一直阻塞请求线程,而读锁不会

public void testZkReadLock() {try {InterProcessReadWriteLock rwlock = new InterProcessReadWriteLock(curatorFramework, "/curator/rwlock");rwlock.readLock().acquire(10, TimeUnit.SECONDS);// TODO:一顿读的操作。。。。//rwlock.readLock().unlock();} catch (Exception e) {e.printStackTrace();}
}public void testZkWriteLock() {try {InterProcessReadWriteLock rwlock = new InterProcessReadWriteLock(curatorFramework, "/curator/rwlock");rwlock.writeLock().acquire(10, TimeUnit.SECONDS);// TODO:一顿写的操作。。。。//rwlock.writeLock().unlock();} catch (Exception e) {e.printStackTrace();}
}

3.7.4. 联锁InterProcessMultiLock

Multi Shared Lock是一个锁的容器。当调用acquire, 所有的锁都会被acquire,如果请求失败,所有的锁都会被release。同样调用release时所有的锁都被release(失败被忽略)。基本上,它就是组锁的代表,在它上面的请求释放操作都会传递给它包含的所有的锁。实现类InterProcessMultiLock:

// 构造函数需要包含的锁的集合,或者一组ZooKeeper的path
public InterProcessMultiLock(List<InterProcessLock> locks);
public InterProcessMultiLock(CuratorFramework client, List<String> paths);// 获取锁
public void acquire();
public boolean acquire(long time, TimeUnit unit);// 释放锁
public synchronized void release();

3.7.5. 信号量InterProcessSemaphoreV2

一个计数的信号量类似JDK的Semaphore。JDK中Semaphore维护的一组许可(permits),而Cubator中称之为租约(Lease)。注意,所有的实例必须使用相同的numberOfLeases值。调用acquire会返回一个租约对象。客户端必须在finally中close这些租约对象,否则这些租约会丢失掉。但是,如果客户端session由于某种原因比如crash丢掉, 那么这些客户端持有的租约会自动close, 这样其它客户端可以继续使用这些租约。主要实现类InterProcessSemaphoreV2:

// 构造方法
public InterProcessSemaphoreV2(CuratorFramework client, String path, int maxLeases);// 注意一次你可以请求多个租约,如果Semaphore当前的租约不够,则请求线程会被阻塞。
// 同时还提供了超时的重载方法
public Lease acquire();
public Collection<Lease> acquire(int qty);
public Lease acquire(long time, TimeUnit unit);
public Collection<Lease> acquire(int qty, long time, TimeUnit unit)// 租约还可以通过下面的方式返还
public void returnAll(Collection<Lease> leases);
public void returnLease(Lease lease);

案例代码:

StockController中添加方法:

@GetMapping("test/semaphore")
public String testSemaphore(){this.stockService.testSemaphore();return "hello Semaphore";
}

StockService中添加方法:

public void testSemaphore() {// 设置资源量 限流的线程数InterProcessSemaphoreV2 semaphoreV2 = new InterProcessSemaphoreV2(curatorFramework, "/locks/semaphore", 5);try {Lease acquire = semaphoreV2.acquire();// 获取资源,获取资源成功的线程可以继续处理业务操作。否则会被阻塞住this.redisTemplate.opsForList().rightPush("log", "10010获取了资源,开始处理业务逻辑。" + Thread.currentThread().getName());TimeUnit.SECONDS.sleep(10 + new Random().nextInt(10));this.redisTemplate.opsForList().rightPush("log", "10010处理完业务逻辑,释放资源=====================" + Thread.currentThread().getName());semaphoreV2.returnLease(acquire); // 手动释放资源,后续请求线程就可以获取该资源} catch (Exception e) {e.printStackTrace();}
}

3.7.6. 栅栏barrier

  1. DistributedBarrier构造函数中barrierPath参数用来确定一个栅栏,只要barrierPath参数相同(路径相同)就是同一个栅栏。通常情况下栅栏的使用如下:

    1. 主client设置一个栅栏
    2. 其他客户端就会调用waitOnBarrier()等待栅栏移除,程序处理线程阻塞
    3. 主client移除栅栏,其他客户端的处理程序就会同时继续运行。

    DistributedBarrier类的主要方法如下:

    setBarrier() - 设置栅栏
    waitOnBarrier() - 等待栅栏移除
    removeBarrier() - 移除栅栏
    
  2. DistributedDoubleBarrier双栅栏,允许客户端在计算的开始和结束时同步。当足够的进程加入到双栅栏时,进程开始计算,当计算完成时,离开栅栏。DistributedDoubleBarrier实现了双栅栏的功能。构造函数如下:

    // client - the client
    // barrierPath - path to use
    // memberQty - the number of members in the barrier
    public DistributedDoubleBarrier(CuratorFramework client, String barrierPath, int memberQty);enter()enter(long maxWait, TimeUnit unit) - 等待同时进入栅栏
    leave()leave(long maxWait, TimeUnit unit) - 等待同时离开栅栏
    

    memberQty是成员数量,当enter方法被调用时,成员被阻塞,直到所有的成员都调用了enter。当leave方法被调用时,它也阻塞调用线程,直到所有的成员都调用了leave。

    注意:参数memberQty的值只是一个阈值,而不是一个限制值。当等待栅栏的数量大于或等于这个值栅栏就会打开!

    与栅栏(DistributedBarrier)一样,双栅栏的barrierPath参数也是用来确定是否是同一个栅栏的,双栅栏的使用情况如下:

    1. 从多个客户端在同一个路径上创建双栅栏(DistributedDoubleBarrier),然后调用enter()方法,等待栅栏数量达到memberQty时就可以进入栅栏。
    2. 栅栏数量达到memberQty,多个客户端同时停止阻塞继续运行,直到执行leave()方法,等待memberQty个数量的栅栏同时阻塞到leave()方法中。
    3. memberQty个数量的栅栏同时阻塞到leave()方法中,多个客户端的leave()方法停止阻塞,继续运行。

3.7.7. 共享计数器

利用ZooKeeper可以实现一个集群共享的计数器。只要使用相同的path就可以得到最新的计数器值, 这是由ZooKeeper的一致性保证的。Curator有两个计数器, 一个是用int来计数,一个用long来计数。

3.7.7.1. SharedCount

共享计数器SharedCount相关方法如下:

// 构造方法
public SharedCount(CuratorFramework client, String path, int seedValue);
// 获取共享计数的值
public int getCount();
// 设置共享计数的值
public void setCount(int newCount) throws Exception;
// 当版本号没有变化时,才会更新共享变量的值
public boolean  trySetCount(VersionedValue<Integer> previous, int newCount);
// 通过监听器监听共享计数的变化
public void addListener(SharedCountListener listener);
public void addListener(final SharedCountListener listener, Executor executor);
// 共享计数在使用之前必须开启
public void start() throws Exception;
// 关闭共享计数
public void close() throws IOException;

使用案例:

StockController:

@GetMapping("test/zk/share/count")
public String testZkShareCount(){this.stockService.testZkShareCount();return "hello shareData";
}

StockService:

public void testZkShareCount() {try {// 第三个参数是共享计数的初始值SharedCount sharedCount = new SharedCount(curatorFramework, "/curator/count", 0);// 启动共享计数器sharedCount.start();// 获取共享计数的值int count = sharedCount.getCount();// 修改共享计数的值int random = new Random().nextInt(1000);sharedCount.setCount(random);System.out.println("我获取了共享计数的初始值:" + count + ",并把计数器的值改为:" + random);sharedCount.close();} catch (Exception e) {e.printStackTrace();}
}
3.7.7.2. DistributedAtomicNumber

DistributedAtomicNumber接口是分布式原子数值类型的抽象,定义了分布式原子数值类型需要提供的方法。

DistributedAtomicNumber接口有两个实现:DistributedAtomicLongDistributedAtomicInteger

在这里插入图片描述

这两个实现将各种原子操作的执行委托给了DistributedAtomicValue,所以这两种实现是类似的,只不过表示的数值类型不同而已。这里以DistributedAtomicLong 为例进行演示

DistributedAtomicLong除了计数的范围比SharedCount大了之外,比SharedCount更简单易用。它首先尝试使用乐观锁的方式设置计数器, 如果不成功(比如期间计数器已经被其它client更新了), 它使用InterProcessMutex方式来更新计数值。此计数器有一系列的操作:

  • get(): 获取当前值
  • increment():加一
  • decrement(): 减一
  • add():增加特定的值
  • subtract(): 减去特定的值
  • trySet(): 尝试设置计数值
  • forceSet(): 强制设置计数值

你必须检查返回结果的succeeded(), 它代表此操作是否成功。如果操作成功, preValue()代表操作前的值, postValue()代表操作后的值。

4. 基于mysql实现分布式锁

不管是jvm锁还是mysql锁,为了保证线程的并发安全,都提供了悲观独占排他锁。所以独占排他也是分布式锁的基本要求。

可以利用唯一键索引不能重复插入的特点实现。设计表如下:

CREATE TABLE `tb_lock` (`id` bigint(20) NOT NULL AUTO_INCREMENT,`lock_name` varchar(50) NOT NULL COMMENT '锁名',`class_name` varchar(100) DEFAULT NULL COMMENT '类名',`method_name` varchar(50) DEFAULT NULL COMMENT '方法名',`server_name` varchar(50) DEFAULT NULL COMMENT '服务器ip',`thread_name` varchar(50) DEFAULT NULL COMMENT '线程名',`create_time` timestamp NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '获取锁时间',`desc` varchar(100) DEFAULT NULL COMMENT '描述',PRIMARY KEY (`id`),UNIQUE KEY `idx_unique` (`lock_name`)
) ENGINE=InnoDB AUTO_INCREMENT=1332899824461455363 DEFAULT CHARSET=utf8;

Lock实体类:

@Data
@AllArgsConstructor
@NoArgsConstructor
@TableName("tb_lock")
public class Lock {private Long id;private String lockName;private String className;private String methodName;private String serverName;private String threadName;private Date createTime;private String desc;
}

LockMapper接口:

public interface LockMapper extends BaseMapper<Lock> {
}

4.1. 基本思路

synchronized关键字和ReetrantLock锁都是独占排他锁,即多个线程争抢一个资源时,同一时刻只有一个线程可以抢占该资源,其他线程只能阻塞等待,直到占有资源的线程释放该资源。

在这里插入图片描述

  1. 线程同时获取锁(insert)
  2. 获取成功,执行业务逻辑,执行完成释放锁(delete)
  3. 其他线程等待重试

4.2. 代码实现

改造StockService:

@Service
public class StockService {@Autowiredprivate StockMapper stockMapper;@Autowiredprivate LockMapper lockMapper;/*** 数据库分布式锁*/public void checkAndLock() {// 加锁Lock lock = new Lock(null, "lock", this.getClass().getName(), new Date(), null);try {this.lockMapper.insert(lock);} catch (Exception ex) {// 获取锁失败,则重试try {Thread.sleep(50);this.checkAndLock();} catch (InterruptedException e) {e.printStackTrace();}}// 先查询库存是否充足Stock stock = this.stockMapper.selectById(1L);// 再减库存if (stock != null && stock.getCount() > 0){stock.setCount(stock.getCount() - 1);this.stockMapper.updateById(stock);}// 释放锁this.lockMapper.deleteById(lock.getId());}
}

加锁:

// 加锁
Lock lock = new Lock(null, "lock", this.getClass().getName(), new Date(), null);
try {this.lockMapper.insert(lock);
} catch (Exception ex) {// 获取锁失败,则重试try {Thread.sleep(50);this.checkAndLock();} catch (InterruptedException e) {e.printStackTrace();}
}

解锁:

// 释放锁
this.lockMapper.deleteById(lock.getId());

使用Jmeter压力测试结果:

在这里插入图片描述

可以看到性能感人。mysql数据库库存余量为0,可以保证线程安全。

4.3. 缺陷及解决方案

缺点

  1. 这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。

    解决方案:给 锁数据库 搭建主备

  2. 这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在数据库中,其他线程无法再获得到锁。

    解决方案:只要做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍。

  3. 这把锁是非重入的,同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在了。

    解决方案:记录获取锁的主机信息和线程信息,如果相同线程要获取锁,直接重入。

  4. 受制于数据库性能,并发能力有限。

    解决方案:无法解决。

5. 总结

实现的复杂性或者难度角度:Zookeeper > redis > 数据库

实际性能角度:redis > Zookeeper > 数据库

可靠性角度:Zookeeper > redis = 数据库

这三种方式都不是尽善尽美,我们可以根据实际业务情况选择最适合的方案:

如果追求极致性能可以选择:reds方案

如果追求可靠性可以选择:zk

常见锁分类:

悲观锁:具有强烈的独占和排他特性,在整个数据处理过程中,将数据处于锁定状态。适合于写比较多,会阻塞读操作。
乐观锁:采取了更加宽松的加锁机制,大多是基于数据版本( Version )及时间戳来实现。。适合于读比较多,不会阻塞读

独占锁、互斥锁、排他锁:保证在任一时刻,只能被一个线程独占排他持有。synchronized、ReentrantLock
共享锁:可同时被多个线程共享持有。CountDownLatch到计数器、Semaphore信号量

可重入锁:又名递归锁。同一个线程在外层方法获取锁的时候,在进入内层方法时会自动获取锁。
不可重入锁:例如早期的synchronized

公平锁:有优先级的锁,先来先得,谁先申请锁就先获取到锁
非公平锁:无优先级的锁,后来者也有机会先获取到锁

自旋锁:当线程尝试获取锁失败时(锁已经被其它线程占用了),无限循环重试尝试获取锁
阻塞锁:当线程尝试获取锁失败时,线程进入阻塞状态,直到接收信号后被唤醒。在竞争激烈情况下,性能较高

读锁:共享锁
写锁:独占排他锁

偏向锁:一直被一个线程所访问,那么该线程会自动获取锁
轻量级锁(CAS):当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁:当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候(10次),还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让他申请的线程进入阻塞,性能降低。
以上其实是synchronized的锁升级过程

表级锁:对整张表加锁,加锁快开销小,不会出现死锁,但并发度低,会增加锁冲突的概率
行级锁:是mysql粒度最小的锁,只针对操作行,可大大减少锁冲突概率,并发度高,但加锁慢,开销大,会出现死锁

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167559.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

98、Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models

简介 github 利用预训练的2D文本到图像模型来合成来自不同姿势的一系列图像。为了将这些输出提升为一致的3D场景表示&#xff0c;将单目深度估计与文本条件下的绘画模型结合起来&#xff0c;提出了一个连续的对齐策略&#xff0c;迭代地融合场景帧与现有的几何形状&#xff0…

nginx国密ssl测试

文章目录 文件准备编译部署nginx申请国密数字证书配置证书并测试 文件准备 下载文件并上传到服务器&#xff0c;这里使用centos 7.8 本文涉及的程序文件已打包可以直接下载。 点击下载 下载国密版openssl https://www.gmssl.cn/gmssl/index.jsp 下载稳定版nginx http://n…

9.9 Windows驱动开发:内核远程线程实现DLL注入

在笔者上一篇文章《内核RIP劫持实现DLL注入》介绍了通过劫持RIP指针控制程序执行流实现插入DLL的目的&#xff0c;本章将继续探索全新的注入方式&#xff0c;通过NtCreateThreadEx这个内核函数实现注入DLL的目的&#xff0c;需要注意的是该函数在微软系统中未被导出使用时需要首…

用XMind2TestCase,测试更轻松

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

数据库-MySQL之数据库必知必会10-13章

第10章 创建计算字段 拼接字段 使用Concat()函数 执行算术计算 示例&#xff1a;从 Products 表中返回 prod_id、prod_price 和 sale_price。sale_price 是一个包含促销价格的计算字段。提示&#xff1a;可以乘以 0.9&#xff0c;得到原价的 90%&#xff08;即 10%的折扣&…

2023.11.24 海豚调度,postgres库使用

目录 海豚调度架构dolphinscheduler DAG(Directed Acyclic Graph)&#xff0c; 个人自用启动服务 DS的架构(海豚调度) 海豚调度架构dolphinscheduler 注:需要先开启zookeeper服务,才能进行以下操作 通过UI进行工作流的配置操作, 配置完成后, 将其提交执行, 此时执行请求会被…

数组基础知识

数组基础&#xff08;不定时更新&#xff09; 数组基础 数组基础 &#xff08;1&#xff09;数组是存放在连续内存空间上的相同类型数据的集合。数组可以方便的通过下标索引的方式获取到下标下对应的数据。数组下标都是从0开始的。数组内存空间的地址是连续的。 &#xff08;…

【科普知识】什么是步进电机?

德国百格拉公司于1973年发明了五相混合式步进电机及其驱动器&#xff0c;1993年又推出了性能更加优越的三相混合式步进电机。我国在80年代以前&#xff0c;一直是反应式步进电机占统治地位&#xff0c;混合式步进电机是80年代后期才开始发展。 步进电机是一种用电脉冲信号进行…

Verilog基础:时序调度中的竞争(一)

相关阅读 Verilog基础https://blog.csdn.net/weixin_45791458/category_12263729.html?spm1001.2014.3001.5482 作为一个硬件描述语言&#xff0c;Verilog HDL常常需要使用语句描述并行执行的电路&#xff0c;但其实在仿真器的底层&#xff0c;这些并行执行的语句是有先后顺序…

【TypeScript】常见数据结构与算法(二):链表

文章目录 链表结构&#xff08;LinkedList&#xff09;链表以及数组的缺点数组链表的优势 什么是链表?封装链表相关方法源码链表常见面试题237-删除链表中的节点206 - 反转链表 数组和链表的复杂度对比 链表结构&#xff08;LinkedList&#xff09; 链表以及数组的缺点 链表…

Interactive Visual Data Analysis

Words&Contents Home | Interactive Visual Data Analysis Book Outline 这本书对视觉、互动和分析方法进行了系统而全面的概述&#xff0c;作为数据可视化方面比较好的读物&#xff1b; 目录 Words&Contents Book Outline &#xff08;一&#xff09;Introduct…

AIGC 3D即将爆发,混合显示成为产业数字化的生产力平台

2023年&#xff0c;大语言模型与生成式AI浪潮席卷全球&#xff0c;以文字和2D图像生成为代表的AIGC正在全面刷新产业数字化。而容易为市场所忽略的是&#xff0c;3D图像生成正在成为下一个AIGC风口&#xff0c;AIGC 3D宇宙即将爆发。所谓AIGC 3D宇宙&#xff0c;即由文本生成3D…

VBA_MF系列技术资料1-227

MF系列VBA技术资料 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧&#xff0c;我参考大量的资料&#xff0c;并结合自己的经验总结了这份MF系列VBA技术综合资料&#xff0c;而且开放源码&#xff08;MF04除外&#xff09;&#xff0c;其中MF01-04属于定…

安装compiler version 5

这个compiler version5 在我的资源里面可以免费下载&#xff1b; 另外这个东西还需要安装&#xff0c;安装教程在这里&#xff1a;Keil最新版保姆教程&#xff08;解决缺少V5编译器问题&#xff09; - 哔哩哔哩 (bilibili.com) 看吧安装好了year

【C语言】qsort的秘密

一&#xff0c;本文目标 qsort函数可以对任意类型数据甚至是结构体内部的数据按照你想要的规则排序&#xff0c;它的功能很强大&#xff0c;可是为什么呢&#xff1f; 我将通过模拟实现qsort函数来让你对这整个过程有一个清晰的深刻的理解。 二&#xff0c;qsort函数原型 v…

leetcode刷题详解一

算法题常用API std::accumulate 函数原型&#xff1a; template< class InputIt, class T > T accumulate( InputIt first, InputIt last, T init );一般求和的&#xff0c;代码如下&#xff1a; int sum accumulate(vec.begin() , vec.end() , 0);详细用法参考 lo…

【python海洋专题四十七】风速的风羽图

【python海洋专题四十七】风速的风羽图 图片 往期推荐 图片 【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 【python海洋专题二】读取水深nc文件并水深地形图 【python海洋专题三】图像修饰之画布和坐标轴 【Python海洋专题四】之水深地图图像修饰 【Pyth…

记一次linux操作系统实验

前言 最近完成了一个需要修改和编译linux内核源码的操作系统实验&#xff0c;个人感觉这个实验还是比较有意思的。这次实验总共耗时4天&#xff0c;从对linux实现零基础&#xff0c;通过查阅资料和不断尝试&#xff0c;直到完成实验目标&#xff0c;在这过程中确实也收获颇丰&…

【黑马甄选离线数仓day04_维度域开发】

1. 维度主题表数据导出 1.1 PostgreSQL介绍 PostgreSQL 是一个功能强大的开源对象关系数据库系统&#xff0c;它使用和扩展了 SQL 语言&#xff0c;并结合了许多安全存储和扩展最复杂数据工作负载的功能。 官方网址&#xff1a;PostgreSQL: The worlds most advanced open s…

Springboot将多个图片导出成zip压缩包

Springboot将多个图片导出成zip压缩包 将多个图片导出成zip压缩包 /*** 判断时间差是否超过6小时* param startTime 开始时间* param endTime 结束时间* return*/public static boolean isWithin6Hours(String startTime, String endTime) {// 定义日期时间格式DateTimeFormatt…