Interactive Visual Data Analysis

Words&Contents

Home | Interactive Visual Data Analysis

Book Outline

这本书对视觉、互动和分析方法进行了系统而全面的概述,作为数据可视化方面比较好的读物; 

目录

Words&Contents

Book Outline

(一)Introduction

1.Basic Considerations

1.1 Visualization ,Interaction , and Computation

1.2 Five Ws of Interactive Visual Data Analysis

2.introductory Examples

2.1 Start Simple

2.2 Enhancing the Data Analysis

2.3 Consider Advanced Techniques

3.Book Outlines


(一)Introduction

信息时代,数据已经变成了一个非常有价值的商品,我们如何 make sense of data ? 如何利用分析数据从而得出一些有价值的信息?

1.Basic Considerations

对可视化的一些基本的术语给予一些认识:

1.1 Visualization ,Interaction , and Computation

 这个定义我认为对整个可视化的概括的更加全面,不仅仅是一次性的绘制图,而是随着insigt的揭露进行交互来不断探究;

1.2 Five Ws of Interactive Visual Data Analysis

为了开发出有效的数据分析工具,必须考虑到该工具的使用环境。因而我们遵循five W的变体来进行探究:Ws: What, why, who, where, and when.

(1)What data are to be analyzed?

有许多中类型的数据,针对不同类型的数据有个体特征,例如数据规模、维度和异质性;

(2)Why are the data analyzed?

帮助人们实现目标,而对于目标即包含多种分析任务,例如识别数据值或者根据数据设定相关的模式;

(3)Who will analyze the data?

这个暂时个人理解是决策者才是需要分析数据的;

(4)Where will the data be analyzed?

普通的工作场所当然是具有显示器、鼠标和键盘的经典桌面设置。然而,也有大型的显示墙和交互式表面,为交互式可视化数据分析提供了新的机会。

(5)When will the data be analyzed?

绝大数是根据自身的需求所决定;

这5个Ws表明了数据分析的工具往往会受到多个因素的影响,对于What和Why这两个因素的影响往往是至关重要的,这往往决定了我们的工作必须是针对某一个任务,即是定制的,不通用的。同时Who,即主观的因素,感知能力、认知、背景知识和专业等也会影响视觉驱动和交互控制的工具。Where和When这两个因素,影响不太大,但是当我们考虑到数据分析要在多个异构显示上运行、支持协作会话或遵循针对特定领域的工作流时,这两个因素可以起到很重要的作用,并且能够使得工作具有更大的亮点,使得更加的专业。

2.introductory Examples

从一些基础的可视化表示到一些高级的分析场景,不仅给出了交互式可视化的强大能力,并且也分析了设计的决策和挑战。

可以改善的一些角度:increase the degree of sophistication of the examples by enhancing the visual mapping, integrating interaction mecha nisms and automatic computations, combining multiple views, incorporating user guidance, and considering multi-display environments.
2.1 Start Simple

一个简单的例子,主要是针对于雨果《悲惨世界》中的人物关系图,这种一般graph可以采用Node-Link diagram,只有图表的结构很难把其中的关系显示出来。图中,每一个人物被可视化为一个节点,人物之间的关系表示为边,这样能够比较明显的表示该数据集中的关系。

针对每一个人物,根据数据集中表示的属性,其中每个节点根据id来进行识别,对于边来说,有权重、边的起点和终点。因此,在图中,边的连接往往决定了节点人物的重要性,因而用颜色来进行编码节点的度,当节点的度数越高,此时也用节点的大小来突出重要的人物;针对边的权重这个性质,我们使用边的宽度来表示,当边的权重越高,说明这个关系较为重要,则边越宽;

notes: 这里的布局主要采用的是强制定向布局算法(Force-directed Layout Algorithm),也称为是力导向布局算法,是一种常用于图形和网络可视化的布局算法怕,它模拟了物理系统中的力和运动原理,通过相互作用的力来确定节点的位置。

2.2 Enhancing the Data Analysis

上述的算法对于较为简单的数据集是非常好的,但是数据集相对复杂的时候就难以展示了,例如 climate networks,节点数量以及边的连线会导致视觉混杂的问题;

A standard approach in such situations is to focus on relevant subsets of the data. Subsets
can be created dynamically using interactive fifiltering mechanisms that enable users to specify the parts of the data they are interested in.
For the climate network we may be interested in those nodes that are crucial for the transfer or flflow in the network. Such nodes are characterized by a high centrality , a graph-theoretic measure. An automatic algorithm can be used to calculate the centrality for each node of the network. Then it is up to the user to determine interactively a suitable threshold for fifiltering out
low-centrality nodes and their incident edges.
我们可以看到,通过动态过滤能够将 climate networks 显示地更加清楚和明白;

目前, 动态过滤(danamic fiter)的方法已经能够解决 dataset size 带来的视觉混乱的问题,但是对于空间和时间所带来的问题,也需要解决;
例如,Climate networks这个网络,一般是在同一个空间中给出的,但是也会受到时间改变的影响。这个问题,使用多个视图的显示解决,如下图;

2.3 Consider Advanced Techniques

综上两个小节,使用了动态过滤和多个视图来对整个数据集有一个较为全面的overview,但是,使用交互式可视化分析数据也会有一些局限。可视化必须适应可用的显示空间。交互不应该让用户做太多的事情。分析计算必须及时地产生结果。

当我们考虑到这两个限制的时候,想出了两个方法:

(1)指导用户进行数据分析;

Some Questions are valued to be answered.

What can I do to get closer to my goal, which action sequence do I have to take, how are the individual interactions carried out? An advanced visual analysis system is capable of providing guidance to assist the user in answering such questions.
当不确定如何进行分析的时候,应该给出一定&平衡的推荐,指导用户接着进行数据分析;

(2)扩大屏幕空间可视化。

可以考虑使用多个显示屏或者多个用户共同协作的方式来解决;

3.Book Outlines(见第一部分)

参考:

https://www.crcpress.com/AK-Peters-Visualiza!on-Series/book-series/CRCVIS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167539.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AIGC 3D即将爆发,混合显示成为产业数字化的生产力平台

2023年,大语言模型与生成式AI浪潮席卷全球,以文字和2D图像生成为代表的AIGC正在全面刷新产业数字化。而容易为市场所忽略的是,3D图像生成正在成为下一个AIGC风口,AIGC 3D宇宙即将爆发。所谓AIGC 3D宇宙,即由文本生成3D…

VBA_MF系列技术资料1-227

MF系列VBA技术资料 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧,我参考大量的资料,并结合自己的经验总结了这份MF系列VBA技术综合资料,而且开放源码(MF04除外),其中MF01-04属于定…

安装compiler version 5

这个compiler version5 在我的资源里面可以免费下载; 另外这个东西还需要安装,安装教程在这里:Keil最新版保姆教程(解决缺少V5编译器问题) - 哔哩哔哩 (bilibili.com) 看吧安装好了year

【C语言】qsort的秘密

一,本文目标 qsort函数可以对任意类型数据甚至是结构体内部的数据按照你想要的规则排序,它的功能很强大,可是为什么呢? 我将通过模拟实现qsort函数来让你对这整个过程有一个清晰的深刻的理解。 二,qsort函数原型 v…

leetcode刷题详解一

算法题常用API std::accumulate 函数原型&#xff1a; template< class InputIt, class T > T accumulate( InputIt first, InputIt last, T init );一般求和的&#xff0c;代码如下&#xff1a; int sum accumulate(vec.begin() , vec.end() , 0);详细用法参考 lo…

【python海洋专题四十七】风速的风羽图

【python海洋专题四十七】风速的风羽图 图片 往期推荐 图片 【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 【python海洋专题二】读取水深nc文件并水深地形图 【python海洋专题三】图像修饰之画布和坐标轴 【Python海洋专题四】之水深地图图像修饰 【Pyth…

记一次linux操作系统实验

前言 最近完成了一个需要修改和编译linux内核源码的操作系统实验&#xff0c;个人感觉这个实验还是比较有意思的。这次实验总共耗时4天&#xff0c;从对linux实现零基础&#xff0c;通过查阅资料和不断尝试&#xff0c;直到完成实验目标&#xff0c;在这过程中确实也收获颇丰&…

【黑马甄选离线数仓day04_维度域开发】

1. 维度主题表数据导出 1.1 PostgreSQL介绍 PostgreSQL 是一个功能强大的开源对象关系数据库系统&#xff0c;它使用和扩展了 SQL 语言&#xff0c;并结合了许多安全存储和扩展最复杂数据工作负载的功能。 官方网址&#xff1a;PostgreSQL: The worlds most advanced open s…

Springboot将多个图片导出成zip压缩包

Springboot将多个图片导出成zip压缩包 将多个图片导出成zip压缩包 /*** 判断时间差是否超过6小时* param startTime 开始时间* param endTime 结束时间* return*/public static boolean isWithin6Hours(String startTime, String endTime) {// 定义日期时间格式DateTimeFormatt…

【数据结构】—搜索二叉树(C++实现,超详细!)

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;消えてしまいそうです—真夜中 1:15━━━━━━️&#x1f49f;──────── 4:18 &#x1f504; ◀️ ⏸ ▶️…

函数计算的新征程:使用 Laf 构建 AI 知识库

Laf 已成功上架 Sealos 模板市场&#xff0c;可通过 Laf 应用模板来一键部署&#xff01; 这意味着 Laf 在私有化部署上的扩展性得到了极大的提升。 Sealos 作为一个功能强大的云操作系统&#xff0c;能够秒级创建多种高可用数据库&#xff0c;如 MySQL、PostgreSQL、MongoDB …

js实现获取原生form表单的数据序列化表单以及将数组转化为一个对象obj,将数组中的内容作为对象的key转化为对象,对应的值转换为对象对应的值

1.需求场景 哈喽 大家好啊&#xff0c;今天遇到一个场景&#xff0c; js实现获取原生form表单的数据序列化表单以及将数组转化为一个对象obj&#xff0c;将数组中的内容作为对象的key转化为对象&#xff0c;对应的值转换为对象对应的值 数组对象中某个属性的值&#xff0c;转…

元宇宙现已开放!

在 2023 年 11 月 3 日 The Sandbox 首个全球创作者日上&#xff0c;The Sandbox 联合创始人 Arthur Madrid 和 Sebastien Borget 宣布元宇宙已开放&#xff0c;已创作完整体验的 LAND 持有者可以自行将体验发布至 The Sandbox 地图上。 精选速览 LAND 持有者&#xff1a;如果…

在JVM中 判定哪些对象是垃圾?

目录 垃圾的条件 1、引用计数法 2、可达性分析 3、强引用 4、软引用 5、弱引用 6、虚引用 判断垃圾的条件 在Java虚拟机&#xff08;JVM&#xff09;中&#xff0c;垃圾收集器负责管理内存&#xff0c;其中的垃圾收集算法用于确定哪些对象是垃圾&#xff0c;可以被回收…

VBA即用型代码手册之工作薄的关闭保存及创建

我给VBA下的定义&#xff1a;VBA是个人小型自动化处理的有效工具。可以大大提高自己的劳动效率&#xff0c;而且可以提高数据的准确性。我这里专注VBA,将我多年的经验汇集在VBA系列九套教程中。 作为我的学员要利用我的积木编程思想&#xff0c;积木编程最重要的是积木如何搭建…

[Latex] Riemann 问题中的激波,接触间断,膨胀波的 Tikz 绘图

Latex 代码 \begin{figure}\begin{subfigure}[b]{0.32\textwidth}\centering\resizebox{\linewidth}{!}{\begin{tikzpicture}\coordinate (o) at (0,0);\coordinate (Si) at (2.5,2.5);\coordinate (x) at (1,0);\draw[->] (0,0) -- (3,0) node[right] {$x$};\draw[->] …

ArkTS-自定义组件学习

文章目录 创建自定义组件页面和自定义组件生命周期自定义组件和页面的区别页面生命周期(即被Entry修饰的组件)组件生命周期(即被Component修饰的组件) Builder装饰器&#xff1a;自定义构建函数按引用传递参数按值传递参数 BuilderParam装饰器&#xff1a;引用Builder函数 这个…

生物动力葡萄酒和有机葡萄酒一样吗?

农业维持了数十万年的文明&#xff0c;但当人类以错误的方式过多干预&#xff0c;过于专注于制造和操纵产品时&#xff0c;农业往往会失败。如果我们的目标是获得最高质量的收成&#xff0c;并长期坚持我们的做法&#xff0c;我们就必须与土地打交道。 当我们开始寻找生物动力…

应用内测分发平台如何上传应用包体?

●您可免费将您的应用&#xff08;支持苹果.ios安卓.apk文件&#xff09;上传至咕噜分发平台&#xff0c;我们将免费为应用生成下载信息&#xff0c;但咕噜分发将会对应用的下载次数进行收费&#xff08;每个账号都享有免费赠送的下载点数以及参加活动的赠送点数&#xff09;&a…

【电路笔记】-分压器

分压器 文章目录 分压器1、概述2、负载分压器3、分压器网络4、无功分压器4.1 电容分压器4.2 感应分压器 5、总结 有时&#xff0c;需要精确的电压值作为参考&#xff0c;或者仅在需要较少功率的电路的特定阶段之前需要。 分压器是解决此问题的一个简单方法&#xff0c;因为它们…