每日一题:LeetCode-102.二叉树的层序遍历

每日一题系列(day 03)

前言:

🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈

   🔎🔎如果说代码有灵魂,那么它的灵魂一定是👉👉算法👈👈,因此,想要写出💚优美的程序💚,核心算法是必不可少的,少年,你渴望力量吗😆😆,想掌握程序的灵魂吗❓❗️那么就必须踏上这样一条漫长的道路🏇🏇,我们要做的,就是斩妖除魔💥💥,打怪升级!💪💪当然切记不可😈走火入魔😈,每日打怪,日日累积,终能成圣🙏🙏!开启我们今天的斩妖之旅吧!✈️✈️

LeetCode-102.二叉树的层序遍历

题目:

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例1:

在这里插入图片描述

示例2:

在这里插入图片描述

注意事项:

  • 树中节点数目在范围 [0, 2000] 内
  • -1000 <= Node.val <= 1000

解法一:

  思路:

  说到二叉树的层序遍历,我们第一反应肯定是用广度优先搜索,广搜需要队列存储每一层的节点,当一层节点处理完之后再将本层已处理的节点全部pop掉,接着处理下一层节点,直到处理完毕,深搜便完成了,这里题目要求用二维数组来接收深搜的结果,所以我们可以开个二维数组,在每层节点pop之前,把每层节点记录在一位数组中,最终把一维数组放到二维数组中。每一层的二维数组都代表每一层的节点的遍历结果。

  1、首先,当节点为空的时候我们直接返回空的二维数组。不为空则根据题目要求创建一个二维数组,再创建队列来记录二叉树的每个节点,再将根节点压入到队列中。
  2、节点已经入队,开始处理二叉树。我们知道,二叉树有很多层,所以我们需要一层一层来遍历,每一层处理完后,本层节点也被pop,再处理下一层,其实这就是一个循环的过程。条件是只要不为空就一直处理。
  3、在循环内,创建一个临时一维数组来记录本层所有节点的值,用计数器来记录这层拥有的节点个数,再使用for循环处理每一层的节点。
  4、for循环内,取队头元素,将队头的元素值压入本层的一维数组中,当处理的当前节点时,如果当前节点有子节点,就把下一层的子节点入队,用来下次的遍历,最后再将当前已经处理完了的节点pop出队列。
  5、最后直接返回二维数组即可。

代码实现:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {if(root == NULL)vector<vector<int>> ans;//根据题目要求创建一个二维数组return vector<vector<int>>();//节点为空直接返回空的二维数组即可queue<TreeNode *> q;//创建一个队列用来记录每一层的节点TreeNode *node = nullptr;//记录队列的每个节点,便于处理单个节点q.push(root);//将根节点压入队列while(!q.empty())//只要队列不为空说明这一层还存在节点{int cnt = q.size();//记录队列节点数量vector<int> tmp;//使用tmp数组接收每一层的节点for(int i = 0 ; i < cnt ; i++)//处理每层的节点{node = q.front();//记录取队头节点tmp.push_back(node -> val);//在队列这层节点pop之前将节点值压入本层的一维数组,这个一维数组就是这层节点if(node -> left) q.push(node -> left);//本层节点的左子树存在就把左孩子入队列,下次处理if(node -> right) q.push(node -> right);//本层节点的右子树存在就把右孩子入队列,下次处理q.pop();//本层节点处理完,把本层pop掉,处理下一层节点}ans.push_back(tmp);//将一维数组(本层遍历结果)尾插进二维数组}return ans;//返回二维数组即可}
};

解法二:

  思路:

  其实这题完全可以不用广搜,使用深搜也能进行层序遍历,并且使用深搜的代码会更加简洁一些。使用深搜也就是dfs,那么如何深搜才是关键,其实我们只需要知道每个节点的层数就可以进行深搜了,我们可以直接用节点的层数把深搜的每个节点压入到对应层的数组中。

  1、在深度优先搜索前,我们按照题目要求先创建一个二维数组,然后进行深搜,这里需要注意,dfs的参数首先要传入根节点,在传入从哪层开始处理的层次(从第0层开始处理),最后再传参二维数组的引用。
  2、进入到深搜,如果节点为空的话直接返回。当本层层数与二维数组存储的一维数组数量相等,表示已经处理到当前的层数了,这个时候在二维数组当前层数(下标)插入一个空一维数组。
  3、接下来就将每一层的节点插入到对应层的一维数组中,然后向左子树搜索,左子树为当前层的下一层,所以传参k + 1,然后向右子树搜索,同样层数为k + 1,最后return即可。

在这里插入图片描述

代码实现:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:void dfs(TreeNode *root, int k, vector<vector<int>> &ans)//传参需要根节点,节点所在层数,以及二维数组的引用传参{if(root == NULL) return;//根节点为null直接返回if(k == ans.size()) ans.push_back(vector<int>());//当当前层数与二维数组存储一维数组数量相同时,表示处理到当前的层数了,对二维数组进行尾插一个空一维数组ans[k].push_back(root -> val);//将每一层的节点尾插到每一层的数组里dfs(root -> left,  k + 1, ans);//深搜左子树,下一层节点层数要加一dfs(root -> right, k + 1, ans);//同样,深搜下一层右子树,层数加一return;//深搜结束}vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> ans;//创建二维数组dfs(root, 0, ans);//进行深搜return ans;//返回深搜结果即可}
};

  二叉树的层序遍历,我们通常是使用第一种队列的方式进行广度优先搜索,然而用深度优先搜索来对二叉树层序遍历的代码设计感更优美,可读性也更高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167122.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NX二次开发UF_CSYS_set_wcs 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CSYS_set_wcs Defined in: uf_csys.h int UF_CSYS_set_wcs(tag_t csys_id ) overview 概述 Sets the work coordinate system to the prototype coordinate system whose tag y…

基于低代码平台搭建应用程序

目录 一、背景 二、如何基于低代码开发应用&#xff1f; 1.创建数据表 2.添加数据表属性 3.配置功能 4.数据筛选 5.数据集显示&功能发布 三、写在最后 一、背景 很多时候&#xff0c;市场上的管理软件鱼龙混杂&#xff0c;找一些外包团队在实际应用中效果并不理想&#xff…

开源还是闭源(=°Д°=)!!趋势表明,开源技术在诸多领域中日益受到重视

开源和闭源&#xff0c;两种截然不同的开发模式&#xff0c;对于大模型的发展有着重要影响。开源让技术共享&#xff0c;吸引了众多人才加入&#xff0c;推动了大模的创新。而闭源则保护了商业利益和技术优势&#xff0c;为大模型的商业应用提供了更好的保障。 一、开源和闭源的…

通过ros系统中websocket中发送sensor_msgs::Image数据给web端显示(三)

通过ros系统中websocket中发送sensor_msgs::Image数据给web端显示(三) 不使用base64编码方式传递 #include <ros/ros.h> #include <signal.h> #include <sensor_msgs/Image.h> #include <message_filters/subscriber.h> #include <message_filter…

【正点原子STM32连载】第五十九章 T9拼音输入法实验(Julia分形)实验 摘自【正点原子】APM32F407最小系统板使用指南

1&#xff09;实验平台&#xff1a;正点原子APM32F407最小系统板 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id609294757420 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html## 第五十…

uniapp IOS从打包到上架流程(详细简单) 原创

​ 1.登入苹果开发者网站&#xff0c;打开App Store Connect ​ 2.新App的创建 点击我的App可以进入App管理界面&#xff0c;在右上角点击➕新建App 即可创建新的App&#xff0c;如下图&#xff1a; ​ 3.app基本信息填写 新建完App后&#xff0c;需要填写App的基本信息&…

SOLIDWORKS 2024新功能之CAM篇

SOLIDWORKS 2024 新功能 CAM篇目录概述 • 附加探测周期参数 • 反转切割的固定循环螺纹加工 • 包含装配体的零件的正确进给/速度数据 • Heidenhain 探测类型 • 2.5 轴特征向导中岛屿的终止条件 • 链接轮廓铣削操作的切入引导和切出引导参数 • 螺纹铣削操作的最小孔…

飞凌嵌入式受邀参加「2023年电子工程师大会」并做主旨演讲

11月23日&#xff0c;华秋电子发烧友在深圳总部举办了「2023年电子工程师大会暨第三届社区年度颁奖」活动&#xff0c;邀请到了高校教授、企业创始人及高管、行业技术专家、电子工程师等众多嘉宾到场&#xff0c;呈现并传播了电子产业动态、最新技术、应用案例及开源硬件项目。…

C#FlaUI.UIA实现发送微信消息原理

一 准备 .NetFramework 4.8 FlaUI.UIA3 4.0.0 FlaUInspect V1.3.0 1下载FlaUInspect https://github.com/FlaUI/FlaUInspect FlaUInspect V1.3.0 百度网盘下载 2 NuGet 引用 flaUI.UIA3 4.0.0 二代码部分 1 引用FlaUI using FlaUI.Core; using FlaUI.Core.Automatio…

安防系统智能视频监控中出现画面异常该如何自检?

大家都知道&#xff0c;在当今社会&#xff0c;摄像头无处不在&#xff0c;除了常见的生活与工作场景中&#xff0c;在一些无法人员无法长期驻点场景&#xff0c;如野生动物监测、高空作业监控、高压电缆监控等场景&#xff0c;在这些地方安装摄像头就是为方便日常监控。但是由…

Odoo:行业领先的免费开源生产制造管理系统

产品生命周期管理 用 Odoo 产品数据管理解决方案加速产品开发 研究、开发和设计新产品或者重新设计现有产品是所有制造企业的活力之源&#xff0c;但很多企业的设计部门和工程部门却完全脱离 ERP 系统。这导致工程师需要耗费大量时间来回答企业中其他部门就产品状态、修改级别…

Course1-Week2-多输入变量的回归问题

Course1-Week2-多输入变量的回归问题 文章目录 Course1-Week2-多输入变量的回归问题1. 向量化和多元线性回归1.1 多维特征1.2 向量化1.3 用于多元线性回归的梯度下降法 2. 使梯度下降法更快收敛的技巧2.1 特征缩放2.2 判断梯度下降是否收敛2.3 如何设置学习率 3. 特征工程3.1 选…

看图说话:对脏读、不可重复度、幻读进行总结

1、脏读 「事务B」将 id 为 1 的用户 name 修改为“小卡”&#xff0c;事务未提交。「事务A」查询 id 为 1 的用户数据&#xff0c;此时 name 已为“小卡”。 2、不可重复度 「事务A」第一次读取 id 为 1 的用户&#xff0c;name 是 “卡卡”。「事务B」将 id 为 1 的用户 nam…

Sectigo

随着互联网的普及和技术的飞速发展&#xff0c;网络安全问题引起重视。这时&#xff0c;有一家名为Sectigo(原Comodo CA)的公司应运而生&#xff0c;致力于为企业和个人提供最先进、最可靠的网络安全解决方案。 Sectigo(原Comodo CA) 成立于2008年&#xff0c;总部位于美国加利…

《使用Python将Excel数据批量写入MongoDB数据库》

在数据分析及处理过程中&#xff0c;我们经常需要将数据写入数据库。而MongoDB作为一种NoSQL数据库&#xff0c;其具有强大的可扩展性、高性能以及支持复杂查询等特性&#xff0c;广泛用于大规模数据存储和分析。在这篇文章中&#xff0c;我们将使用Python编写一个将Excel数据批…

Linux python安装 虚拟环境 virtualenv,以及 git clone的 文件数据, 以及 下资源配置

根目录创建 venvs 文件夹 sudo mkdir /venvs 进入 /venvs 目录 cd /venvsp 创建虚拟环境&#xff0c;前提要按照 python3 安装 的 命令 sudo apt install python3 sudo python3 -m venv 虚拟环境名 激活虚拟环境 source /venvs/zen-venv/bin/activate 安装flask pip install fl…

探究Kafka原理-2.Kafka基本命令实操

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44…

搭建Angular并引入NG-ZORRO组件库

作者&#xff1a;baekpcyyy&#x1f41f; 1.安装node.js 注&#xff1a;安装 16.0 或更高版本的 Node.js node官网&#xff1a;https://nodejs.org/en 2.进入angular官网 https://angular.cn/guide/setup-local 新建一个文件夹 vsc打开 打开终端 1.首先安装angular手脚架…

怎么去掉视频水印?分享三种视频去水印技巧,轻松搞定!

怎么去掉视频水印&#xff1f;在分享视频时&#xff0c;我们常常会遇到因为水印而影响观感的问题&#xff0c;因此&#xff0c;掌握有效的去水印方法显得尤为重要&#xff0c;随着技术的进步&#xff0c;现在有多种方法可以帮助我们去除视频中的水印。 接下来分享三种简单且有效…

ARKit增加一个盒子

ARKit增加一个盒子 体验一下ARKit的能力&#xff0c;在室内随便加点小球&#xff0c;然后在AR中显示出来。 效果如下图&#xff1a; 以下为操作流程。 新建项目 新建一个空项目&#xff0c;项目一定要选择 Augmented Reality App&#xff0c;能够省很多的事。 之后的 conte…