基于 Glibc 版本升级的 DolphinDB 数据查询性能优化实践

在高并发查询、查询需要涉及很多个分区的情况下,低版本的 glibc(低于2.23)会严重影响查询性能。需要升级 glibc 解决该问题优化性能。我们撰写了本文,通过 patchelf 工具修改可执行文件和动态库的 rpath,达到无需升级系统便可以使用高版本 glibc 的目的。

1 概述

在高并发查询、查询需要涉及很多个分区的情况下,需要频繁读取磁盘文件,而旧版 glibc(低于2.23)的 fseek 函数性能低下,导致查询任务堆积,CPU 利用率却不高。需要升级 glibc 解决该问题。由于系统 glibc 通常和系统版本绑定,所以升级系统 glibc 需要升级系统。但是升级系统步骤繁琐,故我们撰写了本文通过 patchelf 工具修改可执行文件和动态库的 rpath,在动态链接时优先链接的高版本 glibc。从而无需升级系统便可以使用高版本 glibc。

2 环境配置与数据模拟

2.1 硬件配置

测试总共使用四台配置相同的服务器,分别命名为 P1、P2、P3、P4,具体硬件配置如表所示。

处理器核数内存操作系统硬盘网络
Intel(R) Xeon(R) Gold 5320 CPU @ 2.20GHz128754 GBCentOS Linux release 7.9SSD万兆局域网

2.2 集群配置

以下测试中使用的 DolphinDB Server 版本为 2.00.9.3。

基于四台服务器搭建双副本高可用集群,假设四台服务器名称分别为 P1、P2、P3、P4,P1 、P2、P3各部署一个控制节点、一个代理节点、一个数据节点,P4 部署一个代理节点、一个数据节点。

主要配置如下表:

配置项
maxMemSize480GB
workerNum128个
TSDBCacheEngineSize100GB

2.3 模拟数据

2.3.1 生成模拟数据

模拟数据为物联网测点数据,有 4 个字段,分别是 id、time、v、q,一天 28.8 亿条数据。数据库按照日期(按天)、id(HASH 128)分区。每个分区约 2250 万条记录。具体脚本见附件。

2.3.2 模拟数据查询

我们模拟单个、20、40、60、100 个并发查询,查询内容为 4 天 1000 个随机id的点查询,理论上将包含 128x4个分区。具体脚本见附件。

3 升级 glibc

3.1 查看本机 DolphinDB 使用的 glibc 版本

执行以下命令

ldd dolphindb

找到 libc.so.6 的位置,在终端执行

/lib64/libc.so.6

得到版本为如图(2.17,低于 2.23)

3.2 下载或者编译高版本 glibc

3.2.1 下载

  • 可自行下载对应系统高版本的 glibc 库和 libgcc 库后手工提取。
  • 或下载 DolphinDB 提供的压缩包(glibc 版本 2.23,Centos 7)。
  • 注意:可能存在兼容性问题。

glibc-2.23.tar.gz

3.2.2 编译

可以通过自行编译的方式解决高版本 glibc 的兼容性问题。

#下载glibc源代码
git clone https://sourceware.org/git/glibc.git
cd glibc
git checkout glibc-2.23
mkdir build
cd build
#具体路径需要自己选择,不要不添加路径或者选择系统库的路径,避免系统glibc被覆盖
../configure --prefix=/home/thchen/glibc-2.23
# -j后面的数字要低于或者等于自己cpu的核数
make -j12
make install
#编译运行需要把系统的/lib64/libgcc_s.so.1 复制到/home/thchen/glibc-2.23/lib里
cp /lib64/libgcc_s.so.1 /home/thchen/glibc-2.23/lib

3.3 解压高版本 glibc 到自定义位置

注意事项:

1)不要解压到系统 lib64、根目录等路径覆盖系统 glibc。

2)不要添加自定义 glibc 文件夹到 LD_LIBRARY_PATH 环境变量。

#当前位置为/home/thchen
tar -zxvf glibc-2.23.tar.gz

3.4 下载 patchelf

sudo yum install patchelf

3.5 文件备份

备份相关文件(dolphindb libDolphinDB.solibgfortran.so.3libopenblas.so.0libquadmath.so.0libstdc++.so.6libtcmalloc_minimal.so.4

#备份文件,需要到dolphindb 可执行文件下的目录
cp dolphindb dolphindb.bak
cp libDolphinDB.so libDolphinDB.so.bak
cp libgfortran.so.3 libgfortran.so.3.bak
cp libopenblas.so.0 libopenblas.so.0.bak
cp libquadmath.so.0 libquadmath.so.0.bak
cp libstdc++.so.6 libstdc++.so.6.bak
cp libtcmalloc_minimal.so.4 libtcmalloc_minimal.so.4.bak

3.6 修改文件的 rpath 和 interpreter

1)关闭 DolphinDB

2)根据高版本 glibc 的路径,修改以下文件的 rpath:dolphindb libDolphinDB.solibgfortran.so.3libopenblas.so.0libquadmath.so.0libstdc++.so.6libtcmalloc_minimal.so.4

#修改rpath,具体路径要看高版本glibc的路径
patchelf --set-interpreter /home/thchen/glibc-2.23/lib/ld-linux-x86-64.so.2 \
--set-rpath ./:/home/thchen/glibc-2.23/lib64 dolphindb
patchelf  --set-rpath ./:/home/thchen/glibc-2.23/lib libDolphinDB.so 
patchelf  --set-rpath ./:/home/thchen/glibc-2.23/lib libgfortran.so.3
patchelf  --set-rpath ./:/home/thchen/glibc-2.23/lib libopenblas.so.0
patchelf  --set-rpath ./:/home/thchen/glibc-2.23/lib libquadmath.so.0
patchelf  --set-rpath ./:/home/thchen/glibc-2.23/lib libstdc++.so.6
patchelf  --set-rpath ./:/home/thchen/glibc-2.23/lib libtcmalloc_minimal.so.4

3.7 验证 glibc 库路径

使用 ldd dolphindb 命令验证当前 glibc 库的路径。当运行结果显示其路径为高版本 glibc 路径时,说明前述修改成功。

4 性能测试与对比

通过在升级前和升级后运行 2.3.2 节的模拟查询,我们得到了以下数据:

查询方法查询用时(glibc 2.17)查询用时(glibc 2.34)加速比
单查询3,241 ms2,007 ms1.61
20并发查询33,346 ms15,313 ms2.18
40并发查询85,144 ms24,672 ms3.45
60并发查询134,065 ms28,793 ms4.66
100并发查询224,902ms46,938 ms4.79

通过升级 glibc,DolphinDB 前后查询加速比为 1.61-4.79 倍。在并发情况下性能提升更加明显。

5 小结

针对高并发查询,当查询需要涉及多个分区时,如果查询任务积压但 CPU 利用率不高,可以先确定 glibc 的版本。如果 glibc 版本低于 2.23,则可以按照本方案进行升级,这可能会带来明显的性能提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/156889.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

专业课140+总分420+东南大学920专业综合考研,信息学院通信专业考研分享

专业课140总分420东南大学920专业综合考研,信息学院通信专业考研分享 我是三月开始系统考研备战,寒假先看的高数全书,奈何在家效率极其低下,才草草看了前三四章。回校后学习的比较认真,每天大概保持10个小时左右&…

3分钟看完NVIDIA GPU架构及演进

近期随着 AI 市场的爆发式增长,作为 AI 背后技术的核心之一 GPU(图形处理器)的价格也水涨船高。GPU 在人工智能中发挥着巨大的重要,特别是在计算和数据处理方面。目前生产 GPU 主流厂商其实并不多,主要就是 NVIDIA、AM…

利用OpenCV实现图片中导线的识别

下面是一个需求,识别图片中的导线,要在图像中检测导线,我们需要采用不同于直线检测的方法。由于OpenCV没有直接的曲线检测函数,如同它对直线提供的HoughLines或HoughLinesP,检测曲线通常需要更多的图像处理步骤和算法&…

java io流中为什么使用缓冲流就能加快文件读写速度

FileInputStream的read方法底层确实是通过调用JDK层面的read方法,并且这个JDK层面的read方法底层是使用C语言编写的,以实现高效的文件读取功能。但是它会涉及多次内核态与操作系统交互。当我们使用FileInputStream的read方法读取文件时,首先会…

UEC++ day7

敌人NPC机制 敌人机制分析与需求 新建一个character类来作为敌人,直接建蓝图设置骨骼网格,因为敌人可能多种就不规定死,然后这个敌人肯定需要两个触发器,一个用于大范围巡逻,一个用于是否达到主角近点进行攻击 注意我…

【Flink】Process Function

目录 1、ProcessFunction解析 1.1 抽象方法.processElement() 1.2 非抽象方法.onTimer() 2、Flink中8个不同的处理函数 2.1 ProcessFunction 2.2 KeyedProcessFunction 2.3 ProcessWindowFunction 2.4 ProcessAllWindowFunction 2.5 CoProcessFunction 2.6 ProcessJo…

https和http的区别和优势

大家好,我是咕噜-凯撒,HTTP(超文本传输协议)和HTTPS(安全超文本传输协议)是用于在网络上传输数据的协议,HTTPS相比HTTP在数据传输过程中更加安全可靠,适合对数据安全性要求较高的场景…

ventoy安装操作系统

下载ventoy https://github.com/ventoy/Ventoy/releases/download/v1.0.96/ventoy-1.0.96-windows.zip 解压后执行 Ventoy2Disk 2、安装后将ISO放入U盘大的分区,通过U盘启动就可以识别到ISO镜像开始装系统

MySQL 日志管理、备份与恢复

一、MySQL 日志管理 MySQL 的日志默认保存位置为 /usr/local/mysql/data vim /etc/my.cnf [mysqld] ##错误日志,用来记录当MySQL启动、停止或运行时发生的错误信息,默认已开启 log-error/usr/local/mysql/data/mysql_error.log #指定日志的保存位置…

springboot项目基于jdk17、分布式事务seata-server-1.7.1、分库分表shardingSphere5.2.1开发过程中出现的问题

由于项目需要,springboot项目需基于jdk17环境开发,结合nacos2.0.3、分布式事务seata-server-1.7.1、分库分表shardingSphere5.2.1等,项目启动过程中出现的问题解决方式小结。 问题一: Caused by: java.lang.RuntimeException: j…

职场Excel:求和家族,不简单

说到excel函数,很多人第一时间想到的就是求和函数sum。作为excel入门级函数,sum的确是小白级的,以至于很多人对求和函数有点“误解”,觉得求和函数太简单了。 但是,你可能不知道,sum只是excel求和家族里的一…

Ubuntu22.04 交叉编译GCC13.2.0 for Rv1126

一、安装Ubuntu22.04 sudo apt install vim net-tools openssh-server 二、安装必要项 sudo apt update sudo apt upgrade sudo apt install build-essential gawk git texinfo bison flex 三、下载必备软件包 1.glibc https://ftp.gnu.org/gnu/glibc/glibc-2.38.tar.gz…

引迈-JNPF低代码项目技术栈介绍

从 2014 开始研发低代码前端渲染,到 2018 年开始研发后端低代码数据模型,发布了JNPF开发平台。 谨以此文针对 JNPF-JAVA-Cloud微服务 进行相关技术栈展示: 1. 项目前后端分离 前端采用Vue.js,这是一种流行的前端JavaScript框架&a…

4D毫米波雷达和3D雷达、激光雷达全面对比

众所周知,传统3D毫米波雷达存在如下性能缺陷: 1)静止目标和地物杂波混在一起,难以区分; 2) 横穿车辆和行人多普勒为零或很低,难以检测; 3) 高处物体和地面目标不能区分,容易造成误刹…

从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖…

部署单仓库多目录项目

部署单仓库多目录项目 文章目录 部署单仓库多目录项目1.部署单仓库多目录项目2.Shell脚本进行部署单仓库多目录项目2.1 编写Shell脚本2.2 Demo推送代码及测试 3.小结 1.部署单仓库多目录项目 #部署单仓库多目录项目 在开发过程中,研发团队往往会将一个大型项目拆分成几个子目录…

MCU 的 TOP 15 图形GUI库:选择最适合你的图形用户界面(一)

在嵌入式系统开发中,选择一个合适的图形用户界面(GUI)库是至关重要的。在屏幕上显示的时候,使用现成的图形库,这样开发人员就不需要弄清楚底层任务,例如如何绘制像素、线条、形状,如果再高级一点…

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于骑手优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…