4D毫米波雷达和3D雷达、激光雷达全面对比

         众所周知,传统3D毫米波雷达存在如下性能缺陷:

        1)静止目标和地物杂波混在一起,难以区分;

        2) 横穿车辆和行人多普勒为零或很低,难以检测;

        3) 高处物体和地面目标不能区分,容易造成误刹,影响安全性;

        4) 角度分辨率低,远处目标位置精度低,误差大;

        5) 点云稀疏,难以识别目标类型。

        4D毫米波雷达突破传统雷达局限性,可以高精度探测目标的距离、速度、水平方位和俯仰方位,使得:        

        1)最远探测距离大幅提高,可达300多米,比激光雷达和视觉传感器都要远;

        2) 4D毫米波雷达水平角度分辨率较高,通常可以达到1°的角度分辨率;

        3) 4D毫米波雷达可以测量俯仰角度,可达到2°的角度分辨率,可在150m处区分地物和立交桥;

        4)多普勒为零或很低的横穿车辆和行人, 通过高精度的水平角和俯仰角可以有效识别目标;

        5)目标点云更密集,信息更丰富,更适合与深度学习框架结合。

        国内外有很多公司在研发4D毫米波雷达,国外有博世、大陆等,国内有森斯泰克、华域汽车等,下表列出了一些典型的公司和产品:

国外主要4D毫米波雷达企业及产品

企业名称

产品频率

通道数

博世

77GHz

12*16=192

大陆

77GHz

12*16=192

电装

77GHz

海拉

77GHz

采埃孚

77GHz

12*16=192

安波福

77GHz

日立

77GHz

Mobileye

77GHz

48*48=2304

特斯拉

77GHz

Arbe

77GHz

48*48=2304

Uhnder

77GHz

Oculii

77GHz

Echodyne

77GHz

Vayyar

77GHz

国内主要4D毫米波雷达企业及产品

企业名称

产品频率

通道数

隼眼科技

77GHz

森思泰克

77GHz

12*16=192

德赛西威

77GHz

楚航科技

77GHz

6*8=48

北京行易道

77GHz

深圳安智杰

77GHz

华域汽车

77GHz

12*16=192

苏州豪米波

77GHz

几何伙伴

77GHz

12*16=192

纳瓦电子

77GHz

12*16=192

华为

77GHz

12*16=192

中兴

77GHz

12*16=192

复睿智行

77GHz

12*16=192

赛恩领动

77GHz

12*16=192

        4D毫米波雷达在各项指标上明显由于传统3D雷达,这里用大陆经典的408雷达和采埃孚frgen21做对比,有更直观的认识。

技术参数

ARS408

FRGEN21

通道数

4T*6R=24

12T*16R=192

工作周期

60ms

60ms

最大点云数

512

3072

最远距离

220m

300m

距离分辨率

0.4m

0.4m

速度分辨率

0.1m/s

0.1m/s

方位角分辨率

1.2°

俯仰角分辨率

10°

2.3°

尺寸估计误差

1.0m

0.5m

朝向估计误差

2.5°

        可以看到,4D雷达在通道数,点云数,最远距离,角分辨力等各方面都明显优于传统3D雷达。当然,指标是抽象的,典型场景的表现更具象,也更有说服力。

典型场景1:地面窨井盖或金属物

​​        下图是典型的城市道路,408雷达将前方的窨井盖识别为静止目标并输出,但4D雷达输出点迹判断为地面点直接过滤,不会形成目标,避免了FCW、AEB等误触发。        下图是路面的连接处,通常是金属,可以看到4D雷达完全检测出来,判断为地面点,不会引起功能问题。典型场景2:指示牌或交通杆

        指示牌和交通杆也是城市道路常见的,下图中408雷达将高处的交通横杆识别为静止目标,但4D雷达的点迹有一定高度,明显高于车辆,会识别为高处点并过滤,不会输出静止目标。典型场景3:十字路口横穿斜穿目标

        十字路口的各类车辆行人等目标对于传统雷达来说很难估计尺寸和朝向,但4D雷达由于点云数量多且精度高,可以基本输出目标轮廓,再通过算法处理得到目标更准确的尺寸和朝向。​        4D雷达性能强,有很多人认为能替代激光雷达,这里用速腾的128线激光雷达M1做对比,两者的指标参数如下。     

        可以看到激光雷达点云数远大于4D雷达,角分辨率也远高于4D雷达,唯二不足的探测距离和速度分辨率。

技术参数

RS-M1

FRGEN21

工作周期

100ms

60ms

最大点云数

70000

3072

最远距离

180m

300m

距离分辨率

0.05m

0.4m

速度分辨率

0.1m/s

方位角分辨率

0.2°

1.2°

俯仰角分辨率

0.2°

2.3°

尺寸估计误差

0.2m

0.5m

朝向估计误差

2.5°

        实车测试同步输出激光雷达和4D雷达目标,可以看到激光雷达尺寸朝向优于4D雷达,但远处目标难以检测,不如4D雷达。        对于近处小目标,激光雷达由于更高的距离角度精度,可以分辨十字路口的行人,但4D雷达对此无能为力。        综合来看,4D毫米波雷达相比3D毫米波雷达功能有明显提升,且产业链成熟,可靠性高,大规模量产价格可控;激光相比4D毫米波雷达功能有提升,但价格较高,性价比偏低;毫米波雷达和视觉融合优势互补,软硬件成熟可靠,性价比高。因此,传感器方案架构可以从多方面综合考虑选择合适的传感器,这里给出一些方案作为参考,仅作为探讨。

传感器配置

性能瓶颈

性能提升

功能提升

当前价格

量产价格

3D前雷达+3D角雷达

静止目标误检

横向误差较大

350+4*200=1150

350+4*200=1150

4D前雷达+3D角雷达

横向误差较大

静止目标误检概率降低85%

正前方切入、切出

AEBACC

1200+4*200=2000

600+4*200=1400

4D前雷达+4D角雷达

侧方、后方切入切出

AEBACCALCLCA

1200+4*400=2800

600+4*300=1800

3D前雷达+3D角雷达+1前激光

横向误差较大

静止目标误检概率降低98%

正前方切入、切出

AEBACC

350+4*200+3500

=4650

350+4*200+2000

=3150

4D前雷达+4D角雷达

+1前激光

侧方、后方切入切出

AEBACCALCLCA

1200+4*400+3500

=6300

600+4*300+2000

=3800

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/156866.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖…

CentOS上搭建SVN并自动同步至web目录

一、搭建svn环境并创建仓库: 1、安装Subversion: yum install svn2、创建版本库: //先建目录 cd /www mkdir wwwsvn cd wwwsvn //创建版本库 svnadmin create xiangmumingcheng二、创建用户组及用户: 1、 进入版本库中的配…

部署单仓库多目录项目

部署单仓库多目录项目 文章目录 部署单仓库多目录项目1.部署单仓库多目录项目2.Shell脚本进行部署单仓库多目录项目2.1 编写Shell脚本2.2 Demo推送代码及测试 3.小结 1.部署单仓库多目录项目 #部署单仓库多目录项目 在开发过程中,研发团队往往会将一个大型项目拆分成几个子目录…

MCU 的 TOP 15 图形GUI库:选择最适合你的图形用户界面(一)

在嵌入式系统开发中,选择一个合适的图形用户界面(GUI)库是至关重要的。在屏幕上显示的时候,使用现成的图形库,这样开发人员就不需要弄清楚底层任务,例如如何绘制像素、线条、形状,如果再高级一点…

Java LinkedList链表、HashSet、HashMap

一、Java LinkedList: 链表(LinkedList)是一种常见的基础数据结构,是一种线性表,在每一个节点里存储下一个节点的地址。链表分为单向链表和双向链表。单向链表包含两个值:当前节点的值和指向下一个节点的链…

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码

基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于骑手优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于骑手优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

2021秋招-总目录

2021秋招-目录 知识点总结 预训练语言模型: Bert家族 1.1 BERT、attention、transformer理解部分 B站讲解–强烈推荐可视化推倒结合代码理解代码部分常见面试考点以及问题: word2vec 、 fasttext 、elmo;BN 、LN、CN、WNNLP中的loss与评价总结 4.1 loss_function&#xff1…

基础算法:大数除以除以13

基础算法:大数除以一个数 信息学奥赛:1175:除以13 时间限制: 1000 ms 内存限制: 65536 KB 【题目描述】 输入一个大于0的大整数N,长度不超过100位,要求输出其除以13得到的商和余数。 【输入】 一个大于0的大整数&…

基于AVR单片机的移动目标视觉追踪系统设计与实现

基于AVR单片机的移动目标视觉追踪系统是一种常见的应用领域,旨在通过摄像头采集图像数据并使用图像处理和追踪算法实现对移动目标的实时追踪。本文将介绍基于AVR单片机的移动目标视觉追踪系统的设计原理和实现步骤,并提供相应的代码示例。 1. 设计概述 …

C语言中的大端字节序和小端字节序是什么?如何进行字节序的转换?

C语言中的大端字节序和小端字节序以及字节序的转换 引言 在计算机科学中,字节序是指多字节数据在存储或传输过程中字节的排列顺序。在C语言中,特别是在涉及二进制数据的处理、网络通信以及硬件相关的编程中,了解大端字节序和小端字节序的概…

QJsonObject经过哪些转换才能发送到UDP端口

一、QJsonObject转换为QJsonDocument 二、将 QJsonDocument 转换为 JSON 字符串,以便输出或传输 三、将 QString 转换为 QByteArray 四、发送到UDP端口 // 将 QJsonObject 转换为 QJsonDocument QJsonDocument jsonDocument(jsonobj); // 将 QJsonDocument 转换为 J…

基于SSM的校内互助交易平台设计

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

使用 AWS boto3 库从 s3 桶中批量下载数据

文章目录 一、Boto3 快速安装二、账户配置三、代码示例3.1 下载单个文件3.2 下载文件夹内全部文件 官方文档 一、Boto3 快速安装 安装 Boto3 之前,先安装 Python 3.8 或更高版本;对 Python 3.6 及更早版本的支持已弃用。 通过 pip 安装最新的 Boto3 版…

MAX/MSP SDK学习04:Messages selector的使用

其实消息选择器在simplemax示例中就接触到了,但这文档非要讲那么抽象。目前为止对消息选择器的理解是:可判断接收过来的消息是否符合本Object的处理要求,比如加法对象只可接收数值型的消息以处理,但不能接收t_symbol型的消息&…

Laravel/Lumen 任务调度简易入门说明

前提 Laravel 中任务调度简化了服务器系统中 Cron 的操作,使得 计划任务 的实现更为简便。 这里主要以 Laravel 自带的消息队列进行说明,了解其间运行关系可以让我们更清晰的进行代码实现。 下方代码以 Lumen 9.x 框架进行举例,与 Laravel…

【Spring Boot】如何在Linux系统中快速启动Spring Boot的jar包

在Linux系统中先安装java的JDK 然后编写下列service.sh脚本,并根据自己的需求只需要修改export的log_path、exec_cmd参数即可 # 配置运行日志输出的路径 export log_path/usr/local/project/study-pro/logs # 当前服务运行的脚本命令 export exec_cmd"nohup /u…

算法训练营一刷 总结篇

今天就是Day60了,坚持了两个月的算法训练营在今天结束了。这两个月中,学习、练习了许许多多的算法,坚持每天完成博客来打卡,养成了写C的习惯,现在相比于Python我反而更喜欢思路严谨的C。感谢这个平台,感谢C…

【DevOps】Git 图文详解(七):标签管理

Git 图文详解(七):标签管理 标签(Tags)指的是某个分支某个特定时间点的状态,是对某一个提交记录的 固定 “指针” 引用。一经创建,不可移动,存储在工作区根目录下 .git\refs\tags。可…

Ajax相关知识

目录 一.前后端传输数据的编码格式(contentType) 1.form表单 2.编码格式 3.Ajax 4.代码演示 后端 前端HTML 二.Ajax发送JSON格式数据 1.引入 后端 前端 2.后端 接收到的数据为空 解决办法 3.request方法判断Ajax 4.总结 前端在通过ajax…

【网络通信】浅析UDP与TCP协议的奥秘

在现代互联网中,UDP(用户数据报协议)和TCP(传输控制协议)是两种最常用的传输协议,它们被广泛应用于网络数据传输。尽管这两种协议都可以用来在网络上传输数据,但它们在设计目标、特点和适用场景…