CTF-PWN-小tips

文章目录

  • overflow
    • scanf
    • get
    • read
    • strcpy
    • strcat
  • Find string in gdb
    • gdb
    • gdb peda
  • Binary Service
  • Find specific function offset in libc
    • 手工
    • 自动
  • Find '/bin/sh' or 'sh' in library
    • 手动
    • 自动
  • Leak stack address
  • Fork problem in gdb
  • Secret of a mysterious section - .tls
  • Predictable RNG(Random Number Generator)
  • Use one-gadget-RCE instead of system
  • Hijack hook function
  • Use printf to trigger malloc and free
  • Use execveat to open a shell

overflow

假设:定义了char buf[40] signed int num

scanf

  • scanf(“%s”, buf)
    %s没有边界检查,可以溢出
  • scanf(“%39s”, buf)
    %39仅从输入中获取39个字节,并将NULL字节放在输入末尾,无法溢出
  • scanf(“%40s”, buf)
    从输入中获取40个字节,但还会在输入末尾的位置放NULL字节,存在单字节NULL溢出
  • scanf(“%d”, &num)
    结合alloca(num)使用,如果设置num为负值,会出现从栈上分配的堆与原来的栈帧重合
    大多数时候,程序只检查了上界而没有忘记num可能为负数(或者说忘了设置num为无符号数),此时将num输入为负数可能有意外的效

alloca()是在栈(stack)上申请空间的

get

  • gets(buf)
    没有边界检查,可溢出
  • fgets(buf,40,stdin)
    从输入中获取39个字节,把NULL字节放在输入末尾,无用

read

  • read(stdin, buf, 40) fread(buf, 1, 40, stdin)
    从输入中获取40个字节,并且不会在末尾放置NULL字节,可能存在信息泄露
    例如
    0x7fffffffdd00: 0x4141414141414141 0x4141414141414141 0x7fffffffdd10: 0x4141414141414141 0x4141414141414141 0x7fffffffdd20: 0x4141414141414141 0x00007fffffffe1cd
    此时如果用printf或puts用于输出buf,它将一直输出,直到NULL字节
    此时可以得到’A’*40 + ‘\xcd\xe1\xff\xff\xff\x7f’,从而信息泄露成功

strcpy

假设:定义char buf2[60]

  • strcpy(buf,buf2)
    strcpy()函数将源字符串buf2 的每个字节拷贝到目的字符串buf 中,直到到达NULL字节,buf2字符串末尾的NULL字节也被拷贝过去,buf2可能比buf长,所以可能溢出
  • stncpy(buf,buf2,40) memcpy(buf,buf2,40)
    将40个字节从buf2复制到buf,但不会在末尾放置NULL字节,由于没有NULL字节,可能存在信息泄露,如printf或puts该内容时,同上面的read的信息泄露

strcat

  • strcat(buf,buf2)
    把 buf2 所指向的字符串追加到 buf 所指向的字符串的结尾。如果buf不够大,可能会导致溢出
    会把NULL字节放在末尾,可能会导致一字节溢出
    在某些情况下,可以使用该NULL字节正好覆盖储存堆栈地址的最低位字节
  • strncat(buf, buf2, n)
    strncat() 在strcat() 的基础上增加第三个参数,其中第三个参数限制添加的最大字符数,其他跟strcat() 一样:把拼接后的字符串作为新的第一个字符串同时也会把NULL字节放在末尾,第二个字符串的值不改变;返回值是第一个参数的地址
    也可能会有单字节NULL溢出

Find string in gdb

environ利用
通过libc找到environ地址后,泄露environ地址处的值,可以得到环境变量地址,环境变量保存在栈中,通过偏移可以得到栈上任意变量的地址。
ssp((Stack Smashing Protect) )攻击
检测到stack smash时,__stack_chk_fail函数会在报错信息中会打印出libc_argv[0]的值,而libc_argv[0]指向的则是程序名。
若我们能够栈溢出足够的长度,覆盖到__libc_argv[0]的位置,那我们就能让程序打印出任意地址的数据,造成任意地址数据泄露。这就是ssp攻击。

在SSP攻击中,我们需要找到argv[0]和输出开始地址之间的距离

gdb

gdb print打印

  • 在gdb中使用p/x ((char **)environ),argv[0]的地址将是打印的地址值 - 0x10
(gdb) p/x (char **)environ # 以十六级进制形式打印
$9 = 0x7fffffffde38
(gdb) x/gx 0x7fffffffde38-0x10 #以一个八个字节为单元十六进制形式显示一个单元地址的内容
0x7fffffffde28: 0x00007fffffffe1cd
(gdb) x/s 0x00007fffffffe1cd#显示地址对应的字符串
0x7fffffffe1cd: "/home/naetw/CTF/seccon2016/check/checker"

gdb peda

使用 searchmem "/home“可找到argv[0]的位置,如图在

[stack] : 0x7fffffffe2cc (“/home/llk/桌面/exp/dui/b00ks”)
在这里插入图片描述

Binary Service

ncat 将二进制文件转换为IP地址和端口

加载顺序为LD_PRELOAD > LD_LIBRARY_PATH > /etc/ld.so.cache > /lib>/usr/lib
LD_PRELOAD(not LD_PRELOAD_PATH) 是要在任何其他库之前加载的特定库 ( files ) 的列表,无论程序是否需要。LD_LIBRARY_PATH是在加载无论如何都会加载的库时要搜索的 目录列表。

  • ncat -vc ./二进制文件名 -kl 127.0.0.1 端口号

当需要修改动态链接库的时候

  • ncat -vc ‘LD_PRELOAD=/path/to/libc.so ./binary’ ./二进制文件名 -kl 127.0.0.1 端口号
  • ncat -vc ‘LD_LIBRARY_PATH=/path/of/libc.so ./binary’ ./二进制文件名 -kl 127.0.0.1 端口号

然后可以通过nc 127.0.0.1 端口号来允许该程序
在这里插入图片描述

Find specific function offset in libc

当我们成功泄露函数地址时,可以得到libc的基地址通过得到函数地址减去函数的偏移

readelf是用来读取elf文件相关信息的

手工

  • readelf -s libc文件 | grep 函数名
    在这里插入图片描述

自动

  • 使用pwntools提供的函数
from pwn import *libc = ELF('libc文件')
system_off = libc.symbols['函数']

Find ‘/bin/sh’ or ‘sh’ in library

objdump反汇编文件

手动

  • strings -tx libc文件 | grep 字符串

自动

from pwn import *libc = ELF('libc.so')
...
sh = base + next(libc.search('sh\x00'))
binsh = base + next(libc.search('/bin/sh\x00'))

Leak stack address

  • 已经泄露libc基地址
  • 可以泄露输入的地址内容

在libc中的environ变量存储的地址和main函数的第三个参数一样,即char **envp,我们可以通过libc中的environ变量泄露栈地址

Fork problem in gdb

  • 可以使用set follow-fork-mode mode来设置fork跟随模式。
  • 进入gdb以后,我们可以使用show follow-fork-mode来查看目前的跟踪模式。
    show follow-fork-mode
  • set follow-fork-mode parent
    gdb只跟踪父进程,不跟踪子进程,这是默认的模式。
  • set follow-fork-mode child
    gdb在子进程产生以后只跟踪子进程,放弃对父进程的跟踪。

想同时调试父进程和子进程,以上的方法就不能满足了。Linux提供了set detach-on-fork mode命令来供我们使用

  • show detach-on-fork
    show detach-on-fork显示了目前的detach-on-fork模式

  • set detach-on-fork on
    只调试父进程或子进程的其中一个(根据follow-fork-mode来决定),这是默认的模式。 另一个进程会独立运行

  • set detach-on-fork off
    父子进程都在gdb的控制之下,其中一个进程正常调试(根据follow-fork-mode来决定),另一个进程会被设置为暂停状态。另一个进程 block 在 fork 位置

在使用“set detach-on-fork off”命令后,用“i inferiors”(i是info命令缩写)查看进程状态,可以看到父子进程都在被gdb调试的状态,前面显示“*”是正在调试的进程。我们可以使用inferior x(x是i inferiors的显示出的进程的num)来切换到对应的进程去调试

Secret of a mysterious section - .tls

  • 需要malloc时候并且可以分配任意大小
  • 能够读出任意地址的内容

一般来说当malloc分配大小大于0x21000时候会使用mmap分配,此时分配的内存区域正好在.tls段之前

.tls段存储了一些有用的信息,例如main_arena的地址,canary的地址,还有一个栈上的地址,该地址总是和指向栈上的具有固定偏移量的位置

Predictable RNG(Random Number Generator)

当程序使用RNG生成得随机数的值来作为某些重要信息的地址时,我们可以使用ctypes来调用动态链接库或共享库中的函数
ctypes是python的一个函数库,提供和C语言兼容的数据类型,可以直接调用动态链接库中的导出函数。

例如如下代码

srand(time(NULL));
while(addr <= 0x10000){addr = rand() & 0xfffff000;
}
secret = mmap(addr,0x1000,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS ,-1,0);
if(secret == -1){puts("mmap error");exit(0);
}

我们可以得到相同的addr通过以下的手段

import ctypes
LIBC = ctypes.cdll.LoadLibrary('libc.so.6')
LIBC.srand(LIBC.time(0))
addr = LIBC.rand() & 0xfffff000

ctypes.cdll.LoadLibrary(动态链接库)加载动态库,然后就可以调用动态库中的函数。

Use one-gadget-RCE instead of system

  • 泄露了libc的基地址
  • 任意地址可写

使用onegadget工具寻找能够getshell的gadget,但一般会有寄存器的要求限制,满足就好

Hijack hook function

  • 泄露了libc基址
  • 可以任意地址写
  • 程序使用到malloc free realloc
void (*hook) (void *, const void *) = atomic_forced_read (__free_hook);
if (__builtin_expect (hook != NULL, 0))
{(*hook)(mem, RETURN_ADDRESS (0));return;
}

检查_free_hook的值是否为空,不为空则调用跳转到位置执行该位置对应的函数。

Use printf to trigger malloc and free

printf有时会引发malloc,当然引发了malloc最后也会引发free

#define EXTSIZ 32
enum { WORK_BUFFER_SIZE = 1000 };if (width >= WORK_BUFFER_SIZE - EXTSIZ)
{/* We have to use a special buffer.  */size_t needed = ((size_t) width + EXTSIZ) * sizeof (CHAR_T);if (__libc_use_alloca (needed))workend = (CHAR_T *) alloca (needed) + width + EXTSIZ;else{workstart = (CHAR_T *) malloc (needed);if (workstart == NULL){done = -1;goto all_done;}workend = workstart + width + EXTSIZ;}
}

引发malloc条件

  • width >= WORK_BUFFER_SIZE - EXTSIZ
  • __libc_use_alloca (needed)==0

看看__libc_use_alloca()相关函数


/* Minimum size for a thread.  We are free to choose a reasonable value.  */
#define PTHREAD_STACK_MIN        16384#define __MAX_ALLOCA_CUTOFF        65536int __libc_use_alloca (size_t size)
{return (__builtin_expect (size <= PTHREAD_STACK_MIN / 4, 1)|| __builtin_expect (__libc_alloca_cutoff (size), 1));
}int __libc_alloca_cutoff (size_t size)
{return size <= (MIN (__MAX_ALLOCA_CUTOFF,THREAD_GETMEM (THREAD_SELF, stackblock_size) / 4/* The main thread, before the thread library isinitialized, has zero in the stackblock_sizeelement.  Since it is the main thread we canassume the maximum available stack space.  */?: __MAX_ALLOCA_CUTOFF * 4));
}

要使得返回值为0,那么要满足

  • __builtin_expect (size <= PTHREAD_STACK_MIN / 4, 1)==0
  • __builtin_expect (__libc_alloca_cutoff (size), 1)==0

__builtin_expect 通常在if-else分支中使用,首先要明确一点就是 if (exp) 等价于 if (__builtin_expert(exp, x)), 与x的值无关。

三目运算符“?:” 中间省略的东东是与 “?”之前的数或者表达式完全一致。

即满足

  • size > PTHREAD_STACK_MIN / 4
  • size > MIN(__MAX_ALLOCA_CUTOFF, THREAD_GETMEM(THREAD_SELF, stackblock_size) / 4 ?: __MAX_ALLOCA_CUTOFF * 4)

此时THREAD_GETMEM通常返回0,所以MIN函数最后的结果为__MAX_ALLOCA_CUTOFF即65536,所以size>65536此时也满足 PTHREAD_STACK_MIN / 4

所以对应size为65537即可引发malloc和free,首先劫持向_malooc_hook或者_free_hook的位置写入onegadget并确定合适width大小,然后利用printf函数格式化字符串漏洞(printf(buf),最后getshell

Use execveat to open a shell

execveat可以发挥与exceve相类似的作用

int execveat(int dirfd, const char *pathname,char *const argv[], char *const envp[],int flags);

当参数pathname指向/bin/sh时,并且argv,envp,flags参数为0时,此时无论dirfd为何值,都可以getshell

对execveat参数的相关说明

If pathname is absolute, then dirfd is ignored.

参考Naetw大佬的GitHub上的总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153247.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【腾讯云 HAI域探秘】高性能服务器引领AI革新浪潮:从AI绘画、知识问答到PyTorch图像分类、视频检测的全方位探索

目录 1 HAI&#xff08;高性能应用服务&#xff09;简介2 HAI的应用场景2.1 HAI在AI作画中的灵活性与效率2.2 深入探索LLM语言模型的应用与性能2.3 HAI支持的AI模型开发环境与工具 3 基于stable difussio的AI 绘画应用实践3.1 使用AI模型中的stable diffusion模型服务3.2 设置和…

10个好用的Mac数据恢复软件推荐—恢复率高达99%

如果您正在寻找最好的 Mac 数据恢复软件来检索意外删除或丢失的文件&#xff0c;那么这里就是您的最佳选择。 我们理解&#xff0c;当您找不到 Mac 计算机或外部驱动器上保存的一些重要文件时&#xff0c;会感到多么沮丧和绝望。这些文件非常珍贵&#xff0c;无论出于何种原因…

【寒武纪(14)】硬件系统由标量指令、向量指令、张量指令、访存指令构成

我们在文档《Cambricon-BANG-C-Developer-Guide-EN-v4.5.1》的build-in function 发现&#xff0c;存在三种计算&#xff1a;矩阵乘法、标量类型、向量。 查阅《Cambricon-BANG-C-CProgramming-Guide-CN-v1.5.0.pdf》可知&#xff0c;硬件系统由标量指令、向量指令、张量指令、…

vscode设置前进、后退快捷键

前言 在我们使用vscode编写程序时&#xff0c;经常需要在不同的文件之间跳来跳去&#xff0c;如果只是依靠个人记忆去操作会显得非常不方便。本文介绍如何设置vscode的前进、后退快捷键。 1 vscode设置前进、后退快捷键 点击“设置”图标&#xff0c;然后点击“键盘快捷方式…

各类软件docker安装

docker Docker 要求 CentOS 系统的内核版本高于 3.10 &#xff0c;通过 uname -r 命令查看你当前的内核版本&#xff1a; uname -r 3.10.0-1062.1.2.el7.x86_64 安装 Docker&#xff1a; 安装 Docker&#xff1a;yum -y install dockerkafka和zookeeper docker pull wurstmei…

python刷题笔记1(42例题)

1. split()函数 str.split([sep [, maxsplit]]) 分割字符串&#xff0c;返回一个数组 2. 判断子串 # 判断子串是否在主串里面&#xff0c;是则输出“Yes”&#xff0c;否则输出“No” str1 input("子串&#xff1a;") str2 input("主串:") if str1 in s…

通信原理板块——差错控制编码或纠错编码

微信公众号上线&#xff0c;搜索公众号小灰灰的FPGA,关注可获取相关源码&#xff0c;定期更新有关FPGA的项目以及开源项目源码&#xff0c;包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等 1、背景 数字信号在传输过程中&…

什么是策划能力?如何提高策划能力?

什么是策划能力&#xff1f; 通常我们理解的策划能力&#xff0c;大多指的是策划活动&#xff0c;比如举办一次活动先要进行活动策划&#xff0c;形成具体的行动方案&#xff0c;然后开展组织人力物力等资源&#xff0c;最终落地实施。策划能力包含活动策划&#xff0c;但又不…

vscode设置代码模板

一键生成vue3模板代码 效果演示 输入vue3 显示快捷键 按回车键 一键生成自定义模板 实现方法 进入用户代码片段设置 选择片段语言 vue.json输入自定义的代码片段 prefix是触发的内容&#xff0c;按自己的喜好来就行&#xff1b; body是模板代码&#xff0c;写入自己需要的…

UE TransformVector 学习笔记

假如算现在枪的位置&#xff0c;那么就是先拿人的位置再拿枪在本地的相对位置相加&#xff0c;就是枪的位置&#xff0c;也就是枪在场景中的位置&#xff0c;那么这里还可以写成Actor的变化和枪的相对位置连在TransformVector上&#xff0c;返回的就是枪的场景位置 这里做反算&…

会议剪影 | 思腾合力受邀出席第四届长三角文博会并作主题演讲

以“担当新使命:长三角文化产业的力量”为主题的「第四届长三角国际文化产业博览会」于2023年11月16日-19日在国家会展中心&#xff08;上海&#xff09;成功举办。思腾合力作为行业领先的人工智能基础架构解决方案商出席本次盛会。 此次展会的面积首次超过10万平米&#xff0c…

BUUCTF 菜刀666 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 流量分析&#xff0c;你能找到flag吗 注意&#xff1a;得到的 flag 请包上 flag{} 提交 密文&#xff1a; 下载附件&#xff0c;解压得到一个.pcapng文件。 解题思路&#xff1a; 1、双击文件&#xff0c;打开wir…

算法-简单-二叉树-翻转、对称

记录一下算法题的学习8 翻转二叉树 翻转二叉树题目 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 举例&#xff1a;给定root[5,3,7,2,4,6,10] 翻转成为root[5,7,3,10,6,4,2] 即所有的根节点的左右节点都要互换位置&#xff0c;输出的…

Python如何将项目直接打包为一键整合包

目录 一、准备项目 二、创建打包文件 三、创建安装脚本 四、执行安装 五、测试安装 六、常见问题与解决方案 总结 Python项目打包成一键整合包是一个比较复杂的任务&#xff0c;需要考虑到项目的各个方面&#xff0c;包括依赖项、配置文件、静态文件、数据库等等。下面是…

NX二次开发UF_CAM_ask_tool_matl_db_object 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;里海NX二次开发3000例专栏 UF_CAM_ask_tool_matl_db_object Defined in: uf_cam.h int UF_CAM_ask_tool_matl_db_object(UF_CAM_db_object_t * db_obj ) overview 概述 This function provides the database object which is…

NX二次开发UF_CAM_ask_lower_limit_plane_status 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;里海NX二次开发3000例专栏 UF_CAM_ask_lower_limit_plane_status Defined in: uf_cam_planes.h int UF_CAM_ask_lower_limit_plane_status(tag_t object_tag, UF_PARAM_lwplane_status_t * status ) overview 概述 Query the…

NX二次开发UF_CAM_ask_opt_template_object 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;里海NX二次开发3000例专栏 UF_CAM_ask_opt_template_object Defined in: uf_cam.h int UF_CAM_ask_opt_template_object(UF_CAM_opt_t * opt_object ) overview 概述 This function provides the object which is used to in…

〖大前端 - 基础入门三大核心之JS篇㊴〗- DOM节点的关系

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;不渴望力量的哈士奇(哈哥)&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xf…