【目标测距】雷达投影测距

文章目录

  • 前言
  • 一、读取点云
  • 二、点云投影图片
  • 三、读取检测信息
  • 四、点云投影测距
  • 五、学习交流

前言

  1. 雷达点云投影相机。图片目标检测,通过检测框约束等等对目标赋予距离。
  2. 计算消耗较大,适合离线验证操作。在线操作可以只投影雷达检测框。

一、读取点云

  • python 读取点云,我这里用的是 open3d 这个库。
import open3d as o3dpcd_path = "1.pcd"
pcd = o3d.io.read_point_cloud(pcd_path)  # 点云

二、点云投影图片

  • 明白标定原理,这部分就很简单,就是一个矩阵运算。投影像素误差多少与传感器标定强相关。
  • 下面代码中 mtx:相机内参 r_camera_to_lidar_inv:相机到雷达的旋转矩阵的逆矩阵 t_camera_to_lidar:相机到雷达的平移向量
    在这里插入图片描述
import open3d as o3d
import numpy as np
import cv2color_label = [(255, 0, 0), (121, 68, 222), (0, 0, 255), (0, 255, 0), (199, 199, 53)]  # 红黄蓝绿青# 不同距显示不同颜色
def get_color(distance):for i in range(2, 50):if i < distance < i + 1:return color_label[i % len(color_label)]return color_label[0]pcd_path = "1.pcd"
pcd = o3d.io.read_point_cloud(pcd_path)  # 点云
image = cv2.imread("1.jpg")cloud = np.asarray(pcd.points)
for point in cloud:camera_coordinate = np.dot(mtx, np.dot(r_camera_to_lidar_inv, point.reshape(3, 1) - t_camera_to_lidar))pixe_coordinate = camera_coordinate / camera_coordinate[2]x_pixe, y_pixe, _ = pixe_coordinatecv2.circle(image, (int(x_pixe), int(y_pixe)), 1, get_color(camera_coordinate[2]), 2)

三、读取检测信息

  • 图像目标检测信息保存在txt文件。格式: frame , x_center , y_cente , width , height , score。
import numpy as npdef GetDetFrameRes(seq_dets, frame):detects = seq_dets[(seq_dets[:, 0] == frame) & (seq_dets[:, 5] <= 6), 1:6]detects[:, 0:2] -= detects[:, 2:4] / 2  # convert to [x中心,y中心,w,h] to [x左上,y左上,w,h]detects[:, 2:4] += detects[:, 0:2]  # convert to [x左上,y左上,w,h] to [x左上,y左上,x右下,y右下]return detectsdet_dir = "result.txt"
det_data = np.loadtxt(det_dir, delimiter=',')
# 假如有100帧图片
for i in range(100):dets_frame = GetDetFrameRes(det_data, i)  # 获取第i帧检测结果

四、点云投影测距

  • 判断点云是否在图像目标检测框内。
  • 对于图片目标检测框有重复的情况,需要对目标检测框进行排列,距离靠前的检测框优先计算。
  • 选取点云中 x 最小的为目标的距离,y 距离取目标框内平均值
    在这里插入图片描述
import os
import cv2
import yaml
import numpy as np
import open3d as o3d
from datetime import datetimedef read_yaml(path):with open(path, 'r', encoding='utf-8') as f:result = yaml.load(f.read(), Loader=yaml.FullLoader)camera_mtx = result["camera"]["front_center"]["K"]r_camera = result["camera"]["front_center"]["rotation"]t_camera = result["camera"]["front_center"]["translation"]lidar_to_car = result["lidar"]["top_front"]["coordinate_transfer"]c_m = np.array([camera_mtx]).reshape(3, 3)r_c = np.array([r_camera]).reshape(3, 3)t_c = np.array([t_camera]).reshape(3, 1)l_c = np.array([lidar_to_car]).reshape(4, 4)return c_m, r_c, t_c, l_cdef get_box_color(index):color_list = [(96, 48, 176), (105, 165, 218), (18, 153, 255)]return color_list[index % len(color_list)]# 不同距显示不同颜色
def get_color(distance):for i in range(2, 50):if i < distance < i + 1:return color_label[i % len(color_label)]return color_label[0]def GetDetFrameRes(seq_dets, frame):detects = seq_dets[(seq_dets[:, 0] == frame) & (seq_dets[:, 5] <= 6), 1:6]detects[:, 0:2] -= detects[:, 2:4] / 2  # convert to [x中心,y中心,w,h] to [x左上,y左上,w,h]detects[:, 2:4] += detects[:, 0:2]  # convert to [x左上,y左上,w,h] to [x左上,y左上,x右下,y右下]return detects# 点云投影到图片
def point_to_image(image_path, pcd_point, det_data, show=False):cloud = np.asarray(pcd_point.points)image = cv2.imread(image_path)det_data = det_data[np.argsort(det_data[:, 3])[::-1]]n = len(det_data)point_dict = {i: [] for i in range(n)}for point in cloud:if 2 < point[0] < 100 and -30 < point[1] < 30:camera_coordinate = np.dot(mtx, np.dot(r_camera_to_lidar_inv, point.reshape(3, 1) - t_camera_to_lidar))pixe_coordinate = camera_coordinate / camera_coordinate[2]x_pixe, y_pixe, _ = pixe_coordinate# 判断一个点是否在检测框里面idx = np.argwhere((x_pixe >= det_data[:, 0]) & (x_pixe <= det_data[:, 2]) &(y_pixe >= det_data[:, 1]) & (y_pixe <= det_data[:, 3])).reshape(-1)if list(idx):index = int(idx[0])cv2.circle(image, (int(x_pixe), int(y_pixe)), 1, get_box_color(index), 2)point_dict[index].append([point[0], point[1]])for i in range(n):cv2.rectangle(image, (int(det_data[i][0]), int(det_data[i][1])), (int(det_data[i][2]), int(det_data[i][3])),get_box_color(int(det_data[i][4])), 2)  # 不同类别画不同颜色框np_data = np.array(point_dict[i])if len(np_data) < 3:continuex = np.min(np_data[:, 0])min_index = np.argmin(np_data, axis=0)y = np.average(np_data[min_index, 1])cv2.putText(image, '{},{}'.format(round(x, 1), round(y, 1)), (int(det_data[i][0]), int(det_data[i][1]) - 10),cv2.FONT_HERSHEY_COMPLEX, 1, get_box_color(int(det_data[i][4])), 2)video.write(image)if show:cv2.namedWindow("show", 0)cv2.imshow("show", image)cv2.waitKey(0)def main():pcd_file_paths = os.listdir(pcd_dir)img_file_paths = os.listdir(img_dir)len_diff = max(0, len(pcd_file_paths) - len(img_file_paths))img_file_paths.sort(key=lambda x: float(x[:-4]))pcd_file_paths.sort(key=lambda x: float(x[:-4]))pcd_file_paths = [pcd_dir + x for x in pcd_file_paths]img_file_paths = [img_dir + x for x in img_file_paths]det_data = np.loadtxt(det_dir, delimiter=',')for i in range(min(len(img_file_paths), len(pcd_file_paths))):pcd = o3d.io.read_point_cloud(pcd_file_paths[i + len_diff])  # 点云now = datetime.now()dets_frame = GetDetFrameRes(det_data, i)point_to_image(img_file_paths[i], pcd, dets_frame, show=show)print(i, datetime.now() - now)video.release()if __name__ == '__main__':color_label = [(255, 0, 0), (121, 68, 222), (0, 0, 255), (0, 255, 0), (199, 199, 53)]  # 红黄蓝绿青path = "F:\\data\\"pcd_dir = path + "lidar_points\\"  # 点云文件夹绝对路径img_dir = path + "image_raw\\"  # 图片文件夹绝对路径det_dir = path + "result.txt"  # 目标检测信息video_dir = path + "point_img4.mp4"video = cv2.VideoWriter(video_dir, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 10, (1920, 1080))  # 保存视频cali_dir = "sensor.yaml"mtx, r_camera, t_camera, lidar_to_car = read_yaml(cali_dir)r_lidar, t_lidar = lidar_to_car[:3, :3], lidar_to_car[:3, -1].reshape(3, 1)r_camera_to_lidar = np.linalg.inv(r_lidar) @ r_camerar_camera_to_lidar_inv = np.linalg.inv(r_camera_to_lidar)t_camera_to_lidar = np.linalg.inv(r_lidar) @ (t_camera - t_lidar)  # 前相机,主雷达标定结果show = Truemain()

五、学习交流

有任何疑问可以私信我,欢迎交流学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153150.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

校园报修抢修小程序系统开发 物业小区报修预约上门维修工单系统

开发的功能模块有&#xff1a; 1.报修工单提交&#xff1a;学生、教职员工等可以使用小程序提交报修请求。这通常包括选择报修的问题类型&#xff08;如水漏、电器故障、照明问题等&#xff09;&#xff0c;地点&#xff0c;报修联系人&#xff0c;联系电话等&#xff0c;并提供…

【5k字长文 | Vue学习笔记】#1 认识Vue对象和基础语法

Vue是一个非常流行的渐进式JavaScript框架&#xff0c;渐进式指的是自底向上&#xff0c;从小组件逐渐向上构成整个项目&#xff0c;渐进式还可以理解为&#xff1a;用什么就拿什么&#xff0c;每个组件只做自己的事&#xff0c;尽可能解耦合。 本节我们将学习简单的Vue实例&a…

Thales安全解决方案:国家网络安全的关键

随着信息技术的飞速发展&#xff0c;网络安全问题日益凸显。在这个背景下&#xff0c;Thales安全解决方案正成为提高国家网络安全的关键。本文将探讨Thales安全解决方案如何为国家网络安全保驾护航。 一、Thales安全解决方案概述 Thales安全解决方案是一种全方位的网络安全防护…

upload-labs关卡11(双写后缀名绕过)通关思路

文章目录 前言一、回顾前几关知识点二、靶场第十一关通关思路1、看源代码2、bp抓包双写后缀名绕过3、检查文件是否成功上传 总结 前言 此文章只用于学习和反思巩固文件上传漏洞知识&#xff0c;禁止用于做非法攻击。注意靶场是可以练习的平台&#xff0c;不能随意去尚未授权的…

细思极恐!5秒钟克隆你的声音

Mocking Bird 是开发者 babysor 开源的比较火的 AI 拟声开源项目&#xff0c;目前在 GitHub 已经获得了 32K 的 Star&#xff0c;它能在 5 秒内克隆你的声音并生成任意语音内容&#xff0c;支持中文普通话。 01 功能特性 支持中文普通话拟声&#xff0c;并且在多个中文数据集…

小程序授权获取头像

wxml <view class"header"><text>头像</text><button class"butt" plain"true" open-type"chooseAvatar" bind:chooseavatar"chooseAvatar"><image src"{{HeadUrl}}" mode"&quo…

初刷leetcode题目(5)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

工具及方法 - 多邻国: Duolingo

网站&#xff1a;Duolingo 有iOS和Android应用&#xff0c;在App Store和Google Play上都能下载。也可以使用网页版。我就在iOS上安装了付费版&#xff0c;为了小朋友学习英语&#xff0c;一年的费用&#xffe5;588。 目前学习中的课程是英语、日语和粤语。英语是小学课程&a…

GPU Microarch 学习笔记【3】Tensor Core

目录 1. 指令与架构 2. Load 3. 计算MMA 4. Set, Step 与thread group 5. OCTET 6. Tensor Core微架构 7. Final Nvidia自从Volta/Turing&#xff08;2018&#xff09;架构开始&#xff0c;在stream multi processor中加入了tensor core&#xff0c;用于加速矩阵计算。如…

代码随想录算法训练营Day36 —— 435. 无重叠区间、763.划分字母区间、56. 合并区间

435. 无重叠区间 思路&#xff1a; 按照左边排序&#xff0c;按照452引爆气球的思路即可&#xff0c;统计重叠区间个数就是最小删除个数&#xff0c; 直接改点就好。 代码&#xff1a; //手搓 class Solution { private:static bool cmp(const vector<int>& a, c…

用Java实现简单的俄罗斯方块

一、创建新项目 1.首先新建一个项目&#xff0c;并命名为俄罗斯方块。 2.其次新建一个类&#xff0c;命名为Main&#xff0c;或其他的。 二、运行代码package 俄罗斯方块; import java.awt.BorderLayout; import java.awt.Color; import java.awt.GridLayout; import java…

贝锐蒲公英路由器X4C如何远程访问NAS?

在目前网盘前路坎坷的情况下&#xff0c;私人云盘已然是一种新的趋势&#xff01;那自己打造一个私有云盘&#xff0c;是否需要高成本或是高门槛呢&#xff1f;其实并不用&#xff01;蒲公英针对个人玩家打造了全方位的私有云解决方案。 &#xff08;1&#xff09;入门级玩家只…

计算机毕业论文内容参考|基于深度学习的交通标识智能识别系统的设计与维护

文章目录 导文摘要前言绪论1课题背景2国内外现状与趋势3课题内容相关技术与方法介绍系统分析总结与展望导文 基于深度学习的交通标识智能识别系统是一种利用深度学习模型对交通标识进行识别和解析的系统。它可以帮助驾驶员更好地理解交通规则和安全提示,同时也可以提高道路交通…

全志H616开发版

开发板介绍&#xff1a; 二、开发板刷机 SDFormatter TF卡的格式化工具、Win32Diskimager 刷机工具 刷机镜像为&#xff1a;Orangepizero2_2.2.0_ubuntu_bionic_desktop_linux4.9.170.img 使用MobaXterm_Personal_20.3连接使用 网络配置&#xff1a;nmcli dev wifi 命令接入网…

策略模式在数据接收和发送场景的应用(升级版)

1.背景 在数据接收和发送场景打算使用了 if else 进行判断&#xff1a; if("A".equals(system)){ASystem.sync("向A同步数据"); } if("B".equals(system)){BSystem.sync("向B同步数据"); } ... 非常麻烦&#xff0c;需求多了很臃肿&…

C#,数值计算——插值和外推,分段线性插值(Linear_interp)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 分段线性插值 /// Piecewise linear interpolation object. /// Construct with x and y vectors, then call interp for interpolated values. /// </summary> …

Windows 安装 Docker

目录 前言安装 WSL2WSL2 简介系统要求安装步骤 安装 Docker Desktop下载安装验证 安装 Docker Compose结语开源项目 前言 下图展示了在 Windows 系统上安装 Docker&#xff0c;并利用Docker Compose一键搭建 youlai-mall 微服务商城所需的环境。本篇将先介绍 Windows 上如何安…

【Linux】指令详解(二)

目录 1. 前言2. 重新认识指令2.1 指令的本质2.1.1 which2.1.2 alias 3. 常见指令3.1 whoami3.2 cd3.2.1 cd -3.2.2 cd ~ 3.3 touch3.3.1 文件创建时间 3.4 stat3.5 mkdir3.5.1 创建一个目录3.5.2 创建路径 3.6 tree3.7 rm3.7.1 rm -f3.7.2 rm -r 3.8 man3.9 cp3.10 mv 1. 前言 …

Leetcode刷题详解——删除并获得点数

1. 题目链接&#xff1a;740. 删除并获得点数 2. 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;你可以对它进行一些操作。 每次操作中&#xff0c;选择任意一个 nums[i] &#xff0c;删除它并获得 nums[i] 的点数。之后&#xff0c;你必须删除 所有 等于 nums[i] …

#gStore-weekly | gBuilder功能详解之结构化数据抽取

上一个weekly中已经详细讲解了schema的设计&#xff0c;在schema设计好了之后&#xff0c;gBuilder支持将结构化和非结构化数据转化为RDF图数据。其中结构化数据支持数据的无损转化。 1. 技术介绍 gBuilder的结构化数据抽取采用D2RQ技术实现。 DR2Q是一个能够将关系数据库中…