【腾讯云云上实验室-向量数据库】探索腾讯云向量数据库:全方位管理与高效利用多维向量数据的引领者

目录

  • 前言
  • 1 腾讯云向量数据库介绍
  • 2 向量数据库信息及设置
    • 2.1 向量数据库实例信息
    • 2.2 实例监控
    • 2.3 密钥管理
    • 2.4 安全组
    • 2.5 Embedding
    • 2.6 可视化界面
  • 3 可视化界面
  • 4 Embedding
    • 4.1 embedding_coll精确查询
    • 4.2 unenabled_embedding_coll精确查询
  • 5 数据库
    • 5.1 创建数据库
    • 5.2 插入数据
    • 5.3 精确检索
  • 6 应用场景
    • 6.1 大模型知识库
    • 6.2 推荐系统
    • 6.3 问答系统
    • 6.4 文本/图像检索
  • 7 总结

前言

腾讯云向量数据库(Tencent Cloud VectorDB)是一款专为存储、检索和分析多维向量数据而设计的全托管式企业级分布式数据库服务。其独特之处在于支持多种索引类型和相似度计算方法,拥有卓越的性能优势,包括高QPS(每秒查询率)、毫秒级查询延迟,以及单索引支持数亿级向量数据规模。通过简单易用的可视化界面,用户可以快速创建数据库实例,进行数据操作,执行查询操作,并配置嵌入式数据转换,提供更广泛的数据处理能力。该数据库适用于多种场景,如构建大型知识库、推荐系统、智能问答系统以及文本/图像检索任务,为企业提供了强大的工具,助力各种应用场景下的高效数据管理和智能应用实现。

1 腾讯云向量数据库介绍

腾讯云向量数据库专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持干亿级向量规模,可支持五百万OPS及毫秒级查询延迟。腾讯云向量数据库,助您实现智能数据的快速、高效管理与应用。
在这里插入图片描述

腾讯云向量数据库具备以下几大亮点:

高性能:持百万级 QPS 及毫秒级查询延迟

大规模:单索引支持 10 亿级向量数据规模

高可用:提供多副本高可用特性,提高容灾能力

低成本:全流程平台托管,无需进行任何安装、部署、运维操作

简单易用:用户通过 API 即可快速操作数据库,开发效率高

稳定可靠:源自腾讯集团自研的向量检索引擎 OLAMA,近 40 个业务线上稳定运行。

2 向量数据库信息及设置

2.1 向量数据库实例信息

显示有关数据库实例的关键详细信息,例如实例 ID、地域、容量、配置等。
在这里插入图片描述

2.2 实例监控

实时或历史性能指标和监控功能,允许用户跟踪数据库使用情况、性能以及资源利用情况。
在这里插入图片描述

2.3 密钥管理

管理访问密钥、身份验证令牌或加密密钥,以保护数据库实例并控制访问权限。
在这里插入图片描述

2.4 安全组

定义和管理安全规则和配置,包括网络访问控制列表(ACL)或防火墙设置,以保护数据库实例。
在这里插入图片描述

2.5 Embedding

与嵌入式数据相关的配置,可能包括将非结构化数据转换为向量格式的设置,并在数据库中管理这些嵌入式数据。
在这里插入图片描述

2.6 可视化界面

以图形方式呈现数据库实例的整体状态、统计信息或其他数据,以用户友好的方式展示信息,便于快速理解和决策。
在这里插入图片描述

3 可视化界面

在这里插入图片描述

Embedding提供了将非结构化数据转换为向量数据的功能,自动将原始文本转换为向量数据并插入数据库,或者执行相似性计算,使向量数据库的使用更加简单便捷。

数据库管理方面基于向量数据库可进行在线的数据库增加、删除和管理。

集合管理涵盖了集合的创建、删除操作,以及查看集合信息和内容。

索引管理方面可进行集合索引在线查看及重建等操作。

全实例查询能够快速进行实例级的数据库和集合全实例查找和展开操作。

在数据操作方面,支持精确查询、模糊查找、更新插入、在线删除,并且支持多集合的并行操作。

这些功能集合为用户提供了更灵活、高效地管理和操作向量数据库的能力。

4 Embedding

提供将非结构化数据转换为向量数据的能力,自动将原始文本转换为向量数据后插入数据库或进行相似性计算,更简单地使用向量数据库

4.1 embedding_coll精确查询

在进行embedding_coll的精确查询时,使用JSON数据进行查询,可能包括按照特定的条件或字段,对数据库中存储的向量数据进行准确的检索。这种查询方式可以帮助用户快速找到所需的向量数据或相关信息,提供了高效、精确的搜索功能。
在这里插入图片描述

4.2 unenabled_embedding_coll精确查询

在unenabled_embedding_coll精确查询中,同样使用JSON数据对数据进行查询。这个查询操作可能是在某些特定条件下执行的,与enabled_embedding_coll相比,可能有些功能或特性处于未启用状态。这种查询可能针对某些特定集合或数据,提供了对数据库中信息的更多探索或筛选功能,使用户能够更全面地利用数据库资源。
在这里插入图片描述

5 数据库

(如图中所示)。此外,(如图中的数据插入界面展示了这一点)。

5.1 创建数据库

基于向量数据库的在线增加、删除和管理数据库是腾讯云向量数据库的关键功能之一。通过可视化界面,用户可以轻松地创建新的数据库实例。

在这里插入图片描述

5.2 插入数据

向量数据库允许用户通过JSON数据将信息插入数据库,这提供了一种灵活且可扩展的方法,使用户能够将各种数据以向量形式存储在数据库中

在这里插入图片描述

5.3 精确检索

在进行数据检索时,向量数据库提供了多种方式。用户可以通过表单形式输入搜索条件,也可以通过JSON数据进行检索
在这里插入图片描述

这种多样性的检索方式可以让用户根据不同的需求和偏好选择最适合的查询方法,无论是简单的数据查询还是更复杂的搜索需求。这种灵活性有助于用户更有效地管理数据库,以及更方便地访问和利用所存储的向量数据。

6 应用场景

6.1 大模型知识库

腾讯云向量数据库与大语言模型LLM协同使用。将企业私域数据经过文本分割和向量化后存储在向量数据库中,形成企业专属的外部知识库。这为大模型提供了提示信息,在后续检索任务中辅助生成更准确的答案。

6.2 推荐系统

推荐系统根据用户历史行为和偏好向用户推荐可能感兴趣的物品。在这种情况下,用户行为特征向量化存储在向量数据库中。系统根据用户特征进行相似度计算,并返回可能感兴趣的物品作为推荐结果。

6.3 问答系统

智能问答系统能够回答用户提出的问题,通常使用NLP服务和深度学习等技术实现。问题和答案通常被转换为向量表示,并存储在向量数据库中。问答系统可通过计算向量之间的相似度,检索最相关的问题信息并返回答案。向量数据库存储和检索相关的向量数据,提高问答系统的检索效率和准确性。

6.4 文本/图像检索

文本/图像检索任务在大规模文本/图像数据库中搜索与指定图像最相似的结果。存储在向量数据库中的文本/图像特征通过高性能索引实现高效的相似度计算,返回匹配的文本/图像结果。

7 总结

腾讯云向量数据库是一全托管的企业级分布式数据库服务,专注于多维向量数据的存储、检索和分析。该数据库支持多种索引类型和相似度计算方法,拥有高性能、大规模、高可用、低成本、简单易用等特点。通过其可视化界面,用户可以轻松管理实例信息、监控性能、进行密钥管理、设置安全组,以及使用Embedding功能将非结构化数据转换为向量数据并插入数据库。

应用场景广泛,包括构建大型知识库、推荐系统、智能问答系统以及文本/图像检索等。例如,与大语言模型配合使用可构建企业专属的知识库,推荐系统可基于用户特征向量化进行相似度计算,问答系统通过向量存储和检索提高响应速度和准确性,文本/图像检索任务可以高效搜索相似内容。腾讯云向量数据库为企业提供了强大的工具,助力各种应用场景下的高效数据管理和智能应用实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153102.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NTLM 认证支持的添加与实现

我在psf/requests项目中报告了bug #932,并提出了一个关于支持HTTP NTLM认证的问题。这篇文章将详细介绍问题背景和解决方案。 HTTP NTLM认证是一种用于验证用户身份的协议。在某些场景下,用户可能需要使用NTLM认证才能访问某些网站或资源。然而&#xff…

SpringCloud 微服务全栈体系(十五)

第十一章 分布式搜索引擎 elasticsearch 五、RestClient 操作文档 为了与索引库操作分离,再次参加一个测试类,做两件事情: 初始化 RestHighLevelClient酒店数据在数据库,需要利用 IHotelService 去查询,所以注入这个接…

Linux shell编程学习笔记28:脚本调试 set命令

0 引入 在Linux Shell 脚本编程的过程中,编写简单功能的脚本,代码不多,一般阅读起来没什么难度,有问题也比较有查出原因和修正。但是当脚本要实现的功能较多,代码变得较为复杂时,阅读起来就不那么容易看明…

一道简单的积分题目

题目如下图&#xff1a; 解法1&#xff1a; 解法2&#xff1a; 解法3&#xff1a; 错误做法&#xff1a; 在 x ∈ ( 0 , ∞ ) 上有 ln ⁡ x < x &#xff0c;令 f ( x ) ln ⁡ x 1 x 2 &#xff0c; g ( x ) &#xff1d; x 1 x 2 ∴ f ( x ) < g ( x ) &#x…

Qt按钮大全续集(QCommandLinkButton和QDialogButtonBox )

## QCommandLinkButton 控件简介 QCommandLinkButton 控件中文名是“命令链接按钮”。QCommandLinkButton 继承QPushButton。CommandLinkButton 控件和 RadioButton 相似,都是用于在互斥选项中选择一项。表面上同平面按钮一样,但是 CommandLinkButton 除带有正常的按钮上的文…

SpringCloud之Feign

文章目录 前言一、Feign的介绍二、定义和使用Feign客户端1、导入依赖2、添加EnableFeignClients注解3、编写FeignClient接口4、用Feign客户端代替RestTemplate 三、自定义Feign的配置1、配置文件方式全局生效局部生效 2、java代码方式 四、Feign的性能优化连接池配置 五、Feign…

代码随想录算法训练营第六十天丨 单调栈03

84.柱状图中最大的矩形 思路 单调栈 本地单调栈的解法和接雨水的题目是遥相呼应的。 为什么这么说呢&#xff0c;42. 接雨水 (opens new window)是找每个柱子左右两边第一个大于该柱子高度的柱子&#xff0c;而本题是找每个柱子左右两边第一个小于该柱子的柱子。 这里就涉…

从入门到精通,mac电脑录屏软件使用教程!

“mac电脑怎么录屏呀&#xff0c;刚买了一台mac电脑&#xff0c;用了几个月感觉挺流畅的&#xff0c;最近因为工作原因&#xff0c;需要用到录屏功能&#xff0c;但是我不会操作&#xff0c;想问问大家有没有简单易懂的录屏教程&#xff0c;谢谢啦。” 在日常生活中&#xff0…

几个强力的nodejs库

几个强力的nodejs库 nodejs被视为许多Web开发人员的理想运行时环境。 nodejs的设计是为了在运行时中使用JavaScript编写的代码&#xff0c;它是世界上最流行的编程语言之一&#xff0c;并允许广泛的开发者社区构建服务器端应用程序。 nodejs提供了通过JavaScript库重用代码的…

FastJsonAPI

maven项目 pom.xml <dependencies><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.26</version></dependency><dependency><groupId>junit</groupId>&l…

Java读写Jar

Java提供了读写jar的类库Java.util.jar&#xff0c;Java获取解析jar包的工具类如下&#xff1a; import java.io.File; import java.io.IOException; import java.net.URL; import java.net.URLClassLoader; import java.util.Enumeration; import java.util.HashMap; import …

【图像分类】【深度学习】【Pytorch版本】ResNet模型算法详解

【图像分类】【深度学习】【Pytorch版本】 ResNet模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】 ResNet模型算法详解前言ResNet讲解Deep residual learning framework(深度残差学习框架)残差结构(Residuals)ResNet模型结构 ResNet Pytorch代码完整代码总结 前…

【练习】检测U盘并自动复制内容到电脑的软件

软件作用&#xff1a; 有U盘插在电脑上后&#xff0c;程序会检测到U盘的路径。 自己可以提前设置一个保存复制文件的路径或者使用为默认保存的复制路径&#xff08;默认为桌面&#xff0c;可自行修改&#xff09;。 检测到U盘后程序就会把U盘的文件复制到电脑对应的…

PyTorch微调终极指南1:预训练模型调整

如今&#xff0c;在训练深度学习模型时&#xff0c;通过根据自己的数据微调预训练模型来进行迁移学习&#xff08;transfer learning&#xff09;已成为首选方法。 通过微调这些模型&#xff0c;我们可以利用他们的专业知识并使它们适应我们的特定任务&#xff0c;从而节省宝贵…

【miniQMT实盘量化4】获取实时行情数据

前言 上篇&#xff0c;我们介绍了如何获取历史数据&#xff0c;有了历史数据&#xff0c;我们可以进行分析和回测。但&#xff0c;下一步&#xff0c;我们更需要的是实时数据&#xff0c;只有能有效的监控实时行情数据&#xff0c;才能让我们变成市场上的“千里眼&#xff0c;…

从0开始学习JavaScript--深入探究JavaScript类型化数组

JavaScript类型化数组是一种特殊的数组类型&#xff0c;引入了对二进制数据的更底层的操作。这种数组提供了对内存中的二进制数据直接进行读写的能力&#xff0c;为处理图形、音频、视频等大规模数据提供了高效的手段。本文将深入探讨JavaScript类型化数组的基本概念、常见类型…

场景交互与场景漫游-对象选取(8-2)

对象选取示例的代码如程序清单8-11所示&#xff1a; /******************************************* 对象选取示例 *************************************/ // 对象选取事件处理器 class PickHandler :public osgGA::GUIEventHandler { public:PickHandler() :_mx(0.0f), _my…

48. 旋转图像

给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&…

用平板当电脑副屏(spacedesk)双端分享

文章目录 1.准备工作2.操作流程1. 打开spacedesk点击2. 勾选USB Cable Android3. 用数据线连接移动端和pc端&#xff0c;选择仅充电4. 打开安装好的spacedesk 记得在win系统中设置扩展显示器&#xff1a; 1.准备工作 下载软件spacedesk Driver Console pc端&#xff1a; 移动…

macos苹果电脑清理软件有哪些?cleanmymac和腾讯柠檬哪个好

MacOS是一款优秀的操作系统&#xff0c;但是随着使用时间的增加&#xff0c;它也会产生一些不必要的垃圾文件&#xff0c;占用磁盘空间和内存资源&#xff0c;影响系统的性能和稳定性。为了保持MacOS的清洁和高效&#xff0c;我们需要使用一些专业的清理软件来定期扫描和清除这…