Redis-高性能原理剖析

redis安装

下载地址:http://redis.io/download
安装步骤:
# 安装gcc
yum install gcc# 把下载好的redis-5.0.3.tar.gz放在/usr/local文件夹下,并解压
wget http://download.redis.io/releases/redis-5.0.3.tar.gz
tar -zxvf redis-5.0.3.tar.gz
cd redis-5.0.3# 进入到解压好的redis-5.0.3目录下,进行编译与安装
make# 修改配置
daemonize yes  #后台启动
protected-mode no  #关闭保护模式,开启的话,只有本机才可以访问redis
# 需要注释掉bind
#bind 127.0.0.1(bind绑定的是自己机器网卡的ip,如果有多块网卡可以配多个ip,代表允许客户端通过机器的哪些网卡ip去访问,内网一般可以不配置bind,注释掉即可)# 启动服务
src/redis-server redis.conf# 验证启动是否成功 
ps -ef | grep redis # 进入redis客户端 
src/redis-cli # 退出客户端
quit# 退出redis服务: 
(1)pkill redis-server 
(2)kill 进程号                       
(3)src/redis-cli shutdown 

Redis的单线程和高性能


Redis是单线程吗?

        Redis 的单线程主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。

Redis 单线程为什么还能这么快?

        因为它所有的数据都在内存中,所有的运算都是内存级别的运算,而且单线程避免了多线程的切换性能损耗问题。正因为 Redis 是单线程,所以要小心使用 Redis 指令,对于那些耗时的指令(比如keys),一定要谨慎使用,一不小心就可能会导致 Redis 卡顿。

Redis 单线程如何处理那么多的并发客户端连接?

        Redis的IO多路复用:redis利用epoll来实现IO多路复用,将连接信息和事件放到队列中,依次放到文件事件分派器,事件分派器将事件分发给事件处理器。

0

# 查看redis支持的最大连接数,在redis.conf文件中可修改,# maxclients 10000 127.0.0.1:6379> CONFIG GET maxclients     ##1) "maxclients"     ##2) "10000"

其他高级命令


keys:全量遍历键,用来列出所有满足特定正则字符串规则的key,当redis数据量比较大时,性能比较差,要避免使用

0

scan:渐进式遍历键

SCAN cursor [MATCH pattern] [COUNT count]

scan 参数提供了三个参数,第一个是 cursor 整数值(hash桶的索引值),第二个是 key 的正则模式,第三个是一次遍历的key的数量(参考值,底层遍历的数量不一定),并不是符合条件的结果数量。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。

注意:但是scan并非完美无瑕, 如果在scan的过程中如果有键的变化(增加、 删除、 修改) ,那么遍历效果可能会碰到如下问题: 新增的键可能没有遍历到, 遍历出了重复的键等情况, 也就是说scan并不能保证完整的遍历出来所有的键, 这些是我们在开发时需要考虑的。

0

0

Info:查看redis服务运行信息,分为 9 大块,每个块都有非常多的参数,这 9 个块分别是:

Server 服务器运行的环境参数

Clients 客户端相关信息

Memory 服务器运行内存统计数据

Persistence 持久化信息

Stats 通用统计数据

Replication 主从复制相关信息

CPU CPU 使用情况

Cluster 集群信息

KeySpace 键值对统计数量信息

0

connected_clients:2 # 正在连接的客户端数量 instantaneous_ops_per_sec:789 # 每秒执行多少次指令 used_memory:929864 # Redis分配的内存总量(byte),包含redis进程内部的开销和数据占用的内存 used_memory_human:908.07K # Redis分配的内存总量(Kb,human会展示出单位) used_memory_rss_human:2.28M # 向操作系统申请的内存大小(Mb)(这个值一般是大于used_memory的,因为Redis的内存分配策略会产生内存碎片) used_memory_peak:929864 # redis的内存消耗峰值(byte) used_memory_peak_human:908.07K # redis的内存消耗峰值(KB) maxmemory:0 # 配置中设置的最大可使用内存值(byte),默认0,不限制,一般配置为机器物理内存的百分之七八十,需要留一部分给操作系统maxmemory_human:0B # 配置中设置的最大可使用内存值 maxmemory_policy:noeviction # 当达到maxmemory时的淘汰策略

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152858.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.NET 8 Video教程介绍(开篇)

教程简介 本文将简单描述视频网站教程,视频网站是一个类似于腾讯视频一样的网站,视频资源用户自己上传,然后提供友好的界面查看视频和搜索视频,并且提供管理页面对于视频进行管理,我们将使用Blazor作为前端&#xff0…

【Spring】SpringBoot的扩展点之ApplicationContextInitializer

简介 其实spring启动步骤中最早可以进行扩展的是实现ApplicationContextInitializer接口。来看看这个接口的注释。 package org.springframework.context;/*** Callback interface for initializing a Spring {link ConfigurableApplicationContext}* prior to being {linkpl…

【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解

【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解 文章目录 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解前言MobleNet_V2讲解反向残差结构(Inverted Residuals)兴趣流形(Manifold of interest)线性瓶颈层…

智能驾驶汽车虚拟仿真视频数据理解(一)

赛题官网 datawhale 赛题介绍 跑通demo paddle 跑通demo torch 提交的障碍物取最主要的那个?不考虑多物体提交。障碍物,尽可能选择状态发生变化的物体。如果没有明显变化的,则考虑周边的物体。车的状态最后趋于减速、停止,时序…

Ubuntu18.04运行gazebo的launch文件[model-4] process has died报错

启动gazebo仿真环境报错[model-4] process has died [model-4] process has died [pid 2059, exit code 1, cmd /opt/ros/melodic/lib/gazebo_ros/spawn_model -urdf -model mycar -param robot_description __name:model __log:/root/.ros/log/8842dc14-877c-11ee-a9d9-0242a…

ts学习04-Es5中的类和静态方法 继承

最简单的类 function Person() {this.name "张三";this.age 20; } var p new Person(); console.log(p.name);//张三构造函数和原型链里面增加方法 function Person(){this.name张三; /*属性*/this.age20;this.runfunction(){console.log(this.name在运动);} }…

redis-持久化

目录 一、RDB RDB触发保存的两种方式 优劣势总结 二、AOF AOF持久化流程: 1、开启AOP 2、异常恢复 3、AOF的同步频率设置 4、ReWrite压缩 5、优劣势总结 Redis 4.0 混合持久化 redis是内存数据库,所有的数据都会默认存在内存中,如…

时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)

一、本文介绍 本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你…

论文导读 | 大语言模型与知识图谱复杂逻辑推理

前 言 大语言模型,尤其是基于思维链提示词(Chain-of Thought Prompting)[1]的方法,在多种自然语言推理任务上取得了出色的表现,但不擅长解决比示例问题更难的推理问题上。本文首先介绍复杂推理的两个分解提示词方法&a…

【数据结构】C语言实现带头双向循环链表万字详解(附完整运行代码)

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 一.了解项目功能 在本次项目中我们的目标是实现一个带头双向循环链表: 该带头双向循环链表使用动态内存分配空间,可以用来存储任意数量的同类型数据. 带头双向循环链表结点(No…

Windows 安装 Docker Compose

目录 前言什么是 Docker Compose ?安装 Docker Compose配置环境变量结语开源项目 前言 在当今软件开发和部署领域,容器化技术的应用已成为提高效率和系统可移植性的关键手段。Docker,作为领先的容器化平台,为开发人员提供了轻松构…

矩阵的QR分解

矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1​,x2​,…,xn​}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1​∣∣x1​∣∣x1​​ q k …

Axure RP Pro 8 mac/win中文版:打造无限可能的原型设计工具

在如今的数字化时代,原型设计工具越来越受到设计师和产品经理们的重视。而Axure RP Pro8作为一款强大的原型设计工具,成为了众多专业人士的首选。 首先,Axure RP Pro8具备丰富的功能。它提供了多种交互元素和动画效果,使得用户可…

SR-LIO--手写紧耦合IESKF

1.ESKF初始化 void eskfEstimator::tryInit(const std::vector<std::pair<double, std::pair<Eigen::Vector3d, Eigen::Vector3d>>> &imu_meas) { //通过imu测量值初始化均值&#xff0c;协方差&#xff1b;(均值用于初始化零偏&#xff0c;协方差用于…

鸿蒙应用开发初尝试《创建项目》,之前那篇hello world作废

经过几年的迅速发展&#xff0c;鸿蒙抛弃了JAVA写应用的方式&#xff0c;几年前了解的鸿蒙显然就gg了。 这几年鸿蒙发布了方舟&#xff08;ArkUI Arkts&#xff09;&#xff0c;将TypeScript作为了推荐开发语言&#xff0c;你依然可以用FAJS,但华为推荐用StageArkTs!!!那么你还…

Java架构师软件架构设计导论

目录 1 软件架构设计导论2 HR角度看架构师3 软件架构设计概述4 顶级大师眼中的架构5 建筑中的架构师6 软件架构的发展阶段7 软件架构的意义8 架构是项目干系人进行交流的手段9 架构有助于循序渐进的原型设计10 架构是设计决策的体现11 架构明确系统设计约束条件12 架构与组织结…

二阶低通滤波器(二阶巴特沃斯滤波器)

连续传递函数G(s) 离散传递函数G(z) 差分方程形式 二阶巴特沃斯滤波器参数设计 设计采样频率100Hz&#xff0c;截止频率33Hz。 注意&#xff1a;设计参数使用在离散系统中&#xff01; 同理&#xff0c;其他不同阶数不同类型的滤波器设计&#xff0c;如二阶高通滤波器、二阶…

计算机网络(持续更新…)

文章目录 一、概述1. 计网概述⭐ 发展史⭐ 基本概念⭐ 分类⭐ 数据交换方式&#x1f970; 小练 2. 分层体系结构⭐ OSI 参考模型⭐TCP/IP 参考模型&#x1f970; 小练 二、物理层1. 物理层概述⭐ 四个特性 2. 通信基础⭐ 重点概念⭐ 极限数据传输率⭐ 信道复用技术&#x1f389…

axios的原理及实现一个简易版axios

面试官&#xff1a;你了解axios的原理吗&#xff1f;有看过它的源码吗&#xff1f; 一、axios的使用 关于axios的基本使用&#xff0c;上篇文章已经有所涉及&#xff0c;这里再稍微回顾下&#xff1a; 发送请求 import axios from axios;axios(config) // 直接传入配置 axio…

第十五章---I/O(输入/输出)

15.1输入输出流 流是一组有序的数据序列&#xff0c;根据操作的类型&#xff0c;可分为输入流和输出流两种。I/O(Input/Output,(输出)流提供了一条通道程序&#xff0c;可以使用这条通道把源中的字节序列送到目的地。虽然 I/O 流疆盘文件存取有关&#xff0c;但是程序的源和目…