智能驾驶汽车虚拟仿真视频数据理解(一)

赛题官网

datawhale 赛题介绍
跑通demo paddle
跑通demo torch
在这里插入图片描述
在这里插入图片描述

  • 提交的障碍物取最主要的那个?不考虑多物体提交。
  • 障碍物,尽可能选择状态发生变化的物体。如果没有明显变化的,则考虑周边的物体。
  • 车的状态最后趋于减速、停止,时序模型可能会影响结果。样本处理时有对运动做加速,但是视频剪辑没有剪得特别好,考虑中间主要的运动场景。
  • 注释文本:中英文。
  • 没有公开训练数据集,只有测试数据集。

五个样例,甚至30个测试样本也可以用来自己标注。
滴滴?

标签信息

在这里插入图片描述

“scerario” : [“suburbs”,“city street”,“expressway”,“tunnel”,“parking-lot”,“gas or charging stations”,“unknown”]
“weather” : [“clear”,“cloudy”,“raining”,“foggy”,“snowy”,“unknown”]
“period” : [“daytime”,“dawn or dusk”,“night”,“unknown”]
“road_structure” : [“normal”,“crossroads”,“T-junction”,“ramp”,“lane merging”,“parking lot entrance”,“round about”,“unknown”]
“general_obstacle” : [“nothing”,“speed bumper”,“traffic cone”,“water horse”,“stone”,“manhole cover”,“nothing”,“unknown”]
“abnormal_condition” : [“uneven”,“oil or water stain”,“standing water”,“cracked”,“nothing”,“unknown”]
“ego_car_behavior” : [“slow down”,“go straight”,“turn right”,“turn left”,“stop”,“U-turn”,“speed up”,“lane change”,“others”]
“closest_participants_type” : [“passenger car”,“bus”,“truck”,“pedestrain”,“policeman”,“nothing”,“others”,“unknown”]
“closest_participants_behavior” : [“slow down”,“go straight”,“turn right”,“turn left”,“stop”,“U-turn”,“speed up”,“lane change”,“others”]

上传json格式示例

{
"author" : "abc" ,
"time" : "YYMMDD",
"model" : "model_name",
"test_results" :[
{
"clip_id" : "xxxx_1",
"scerario" : "cityroad",
"weather":"unknown",
"period":"night",
"road_structure":"ramp",
"general_obstacle":"nothing",
"abnormal_condition":"nothing",
"ego_car_behavior":"turning right",
"closest_participants_type":"passenger car",
"closest_participants_behavior":"braking"
},
{
"clip_id" : "xxxx_2"
... ...
},
... ...
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集

行人检测数据集(极市平台的补充版)
无人驾驶数据集使用指南2019

bdd100k

技术栈参考?

官方技术栈参考

下一步规划

clip
夏令营往期优秀笔记

解题思路

YOLO 目标检测

关键点

在这里插入图片描述

提取到关键点之后,做关键点匹配。
匹配有一个距离的计算,做暴力计算。
在这里插入图片描述

通过视频,做关键点匹配,判断左图到右图是否有旋转的变化?判断关键点的运动。

运动间隔

两帧的结果,查看变化,

车道线检测

识别道路路线,得到分割的结果,判断是不是直行,拐弯。

CLIP

OPENAI 开源的一个多模态模型.
自监督的方式训练文本对的对应关系。

可以做 zero-shot 的预测。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152852.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu18.04运行gazebo的launch文件[model-4] process has died报错

启动gazebo仿真环境报错[model-4] process has died [model-4] process has died [pid 2059, exit code 1, cmd /opt/ros/melodic/lib/gazebo_ros/spawn_model -urdf -model mycar -param robot_description __name:model __log:/root/.ros/log/8842dc14-877c-11ee-a9d9-0242a…

ts学习04-Es5中的类和静态方法 继承

最简单的类 function Person() {this.name "张三";this.age 20; } var p new Person(); console.log(p.name);//张三构造函数和原型链里面增加方法 function Person(){this.name张三; /*属性*/this.age20;this.runfunction(){console.log(this.name在运动);} }…

redis-持久化

目录 一、RDB RDB触发保存的两种方式 优劣势总结 二、AOF AOF持久化流程: 1、开启AOP 2、异常恢复 3、AOF的同步频率设置 4、ReWrite压缩 5、优劣势总结 Redis 4.0 混合持久化 redis是内存数据库,所有的数据都会默认存在内存中,如…

时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)

一、本文介绍 本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你…

论文导读 | 大语言模型与知识图谱复杂逻辑推理

前 言 大语言模型,尤其是基于思维链提示词(Chain-of Thought Prompting)[1]的方法,在多种自然语言推理任务上取得了出色的表现,但不擅长解决比示例问题更难的推理问题上。本文首先介绍复杂推理的两个分解提示词方法&a…

【数据结构】C语言实现带头双向循环链表万字详解(附完整运行代码)

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 一.了解项目功能 在本次项目中我们的目标是实现一个带头双向循环链表: 该带头双向循环链表使用动态内存分配空间,可以用来存储任意数量的同类型数据. 带头双向循环链表结点(No…

Windows 安装 Docker Compose

目录 前言什么是 Docker Compose ?安装 Docker Compose配置环境变量结语开源项目 前言 在当今软件开发和部署领域,容器化技术的应用已成为提高效率和系统可移植性的关键手段。Docker,作为领先的容器化平台,为开发人员提供了轻松构…

矩阵的QR分解

矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1​,x2​,…,xn​}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1​∣∣x1​∣∣x1​​ q k …

Axure RP Pro 8 mac/win中文版:打造无限可能的原型设计工具

在如今的数字化时代,原型设计工具越来越受到设计师和产品经理们的重视。而Axure RP Pro8作为一款强大的原型设计工具,成为了众多专业人士的首选。 首先,Axure RP Pro8具备丰富的功能。它提供了多种交互元素和动画效果,使得用户可…

SR-LIO--手写紧耦合IESKF

1.ESKF初始化 void eskfEstimator::tryInit(const std::vector<std::pair<double, std::pair<Eigen::Vector3d, Eigen::Vector3d>>> &imu_meas) { //通过imu测量值初始化均值&#xff0c;协方差&#xff1b;(均值用于初始化零偏&#xff0c;协方差用于…

鸿蒙应用开发初尝试《创建项目》,之前那篇hello world作废

经过几年的迅速发展&#xff0c;鸿蒙抛弃了JAVA写应用的方式&#xff0c;几年前了解的鸿蒙显然就gg了。 这几年鸿蒙发布了方舟&#xff08;ArkUI Arkts&#xff09;&#xff0c;将TypeScript作为了推荐开发语言&#xff0c;你依然可以用FAJS,但华为推荐用StageArkTs!!!那么你还…

Java架构师软件架构设计导论

目录 1 软件架构设计导论2 HR角度看架构师3 软件架构设计概述4 顶级大师眼中的架构5 建筑中的架构师6 软件架构的发展阶段7 软件架构的意义8 架构是项目干系人进行交流的手段9 架构有助于循序渐进的原型设计10 架构是设计决策的体现11 架构明确系统设计约束条件12 架构与组织结…

二阶低通滤波器(二阶巴特沃斯滤波器)

连续传递函数G(s) 离散传递函数G(z) 差分方程形式 二阶巴特沃斯滤波器参数设计 设计采样频率100Hz&#xff0c;截止频率33Hz。 注意&#xff1a;设计参数使用在离散系统中&#xff01; 同理&#xff0c;其他不同阶数不同类型的滤波器设计&#xff0c;如二阶高通滤波器、二阶…

计算机网络(持续更新…)

文章目录 一、概述1. 计网概述⭐ 发展史⭐ 基本概念⭐ 分类⭐ 数据交换方式&#x1f970; 小练 2. 分层体系结构⭐ OSI 参考模型⭐TCP/IP 参考模型&#x1f970; 小练 二、物理层1. 物理层概述⭐ 四个特性 2. 通信基础⭐ 重点概念⭐ 极限数据传输率⭐ 信道复用技术&#x1f389…

axios的原理及实现一个简易版axios

面试官&#xff1a;你了解axios的原理吗&#xff1f;有看过它的源码吗&#xff1f; 一、axios的使用 关于axios的基本使用&#xff0c;上篇文章已经有所涉及&#xff0c;这里再稍微回顾下&#xff1a; 发送请求 import axios from axios;axios(config) // 直接传入配置 axio…

第十五章---I/O(输入/输出)

15.1输入输出流 流是一组有序的数据序列&#xff0c;根据操作的类型&#xff0c;可分为输入流和输出流两种。I/O(Input/Output,(输出)流提供了一条通道程序&#xff0c;可以使用这条通道把源中的字节序列送到目的地。虽然 I/O 流疆盘文件存取有关&#xff0c;但是程序的源和目…

华为---OSPF网络虚连接(Virtual Link)简介及示例配置

OSPF网络虚连接&#xff08;Virtual Link&#xff09;简介 为了避免区域间的环路&#xff0c;OSPF规定不允许直接在两个非骨干区域之间发布路由信息&#xff0c;只允许在一个区域内部或者在骨干区域和非骨干区域之间发布路由信息。因此&#xff0c;每个ABR都必须连接到骨干区域…

QT基础学习

2创建项目 2.1使用向导创建 打开Qt Creator 界面选择 New Project或者选择菜单栏 【文件】-【新建文件或项目】菜单项 弹出New Project对话框&#xff0c;选择Qt Widgets Application&#xff0c; 选择【Choose】按钮&#xff0c;弹出如下对话框 设置项目名称和路径&#xf…

N 字形变换

将一个给定字符串 s 根据给定的行数 numRows &#xff0c;以从上往下、从左到右进行 Z 字形排列。 比如输入字符串为 “PAYPALISHIRING” 行数为 3 时&#xff0c;排列如下&#xff1a; P A H N A P L S I I G Y I R 之后&#xff0c;你的输出需要从左往右逐行读取&#xff0…

网络参考模型与标准协议(一)

OSI参考模型 OSI 模型(Open Systems Interconnection Model)&#xff0c;由国际化标准组织ISO (TheInternational Organization for Standardization )收录在ISO 7489标准中并于1984年发布。 OSI参考模型又被称为七层模型&#xff0c;由下至上依次为: 物理层: 在设备之间传输比…