【论文阅读】SPARK:针对视觉跟踪的空间感知在线增量攻击

SPARK: Spatial-Aware Online Incremental Attack Against Visual Tracking

introduction

在本文中,我们确定了视觉跟踪对抗性攻击的一个新任务:在线生成难以察觉的扰动,误导跟踪器沿着不正确的(无目标攻击,UA)或指定的轨迹(有针对性的攻击,TA)。为此,我们首先采用现有的攻击方法,即FGSM、BIM和C&W,提出了一种空间感知的基本攻击,并综合分析了攻击性能。我们发现在线对象跟踪带来了两个新的挑战:1)很难生成可以跨帧传输的难以察觉的扰动,2)实时跟踪器要求攻击满足一定的效率水平。为了应对这些挑战,我们进一步提出了空间感知在线增量攻击(SPARK),它在线执行时空稀疏增量扰动,并使对抗性攻击不易被察觉。此外,作为一种基于优化的方法,SPARK通过考虑历史增量扰动,在多次迭代内快速收敛到非常小的损失,使其比基本攻击更加有效。对 OTB100、VOT2018、UAV123 和 LaSOT 上最先进的跟踪器(即 SiamRPN with Alex、MobileNetv2 和 ResNet-50)的深入评估证明了 SPARK 在两种情况下误导跟踪器的有效性和可转移性UA 和 TA 有轻微扰动。

与图像、语音和自然语言处理任务不同,在线目标跟踪对对抗性攻击技术提出了一些新的挑战。 首先,与现有的顺序输入相关任务(例如用于分类的音频 [ 4 ]、自然语言 [ 19 ]或视频 [ 43 ]相比,它们可以访问完整的顺序数据),对象跟踪在其中逐一处理输入帧。令当当前帧t受到攻击,所有先前的帧(即)仍然不可用,也无法立即受到攻击。由于时间数据片段和动态场景变化有限,生成可随时间转移的难以察觉但有效的对抗性扰动(即多个连续帧)更加困难。 此外,对象跟踪通常依赖于从视频的第一帧中裁剪的目标指定对象模板 [ 2 , 24 ]以进行进一步分析。不同的初始指定对象可能会导致不同的跟踪分析,这使得通用对抗性扰动 [ 31 ]通常无效。

此外,在线对象跟踪通常以实时速度运行。因此,它要求攻击足够有效,以便在下一帧到达之前完成当前帧的对抗性扰动。尽管基于梯度下降的方法(例如,FGSM [ 13 ],BIM [ 22 ])被证明可以有效地攻击图像分类器,但当多帧时,它们仍然遇到欺骗最先进的跟踪器的效率问题很快到达。实时攻击多个帧的成本也相当高,即稀疏性 [ 43 ]。

为了更好地理解攻击 VOT 的挑战和独特性,我们首先通过适应用于攻击每个帧的现有最先进的攻击技术(即 FGSM、BIM、C&W),提出了一种空间感知的基本攻击方法单独。我们的实证研究证实,由于实时的连续时间帧,基本攻击对于攻击 VOT 确实无效。在此基础上,我们进一步提出了空间感知在线增量攻击(SPARK)方法,该方法可以在有效性和效率方面产生更多难以察觉的在线扰动。

本文的主要贡献如下:

  • 我们将 VOT 的对抗性攻击问题形式化,即在线生成难以察觉的扰动,以误导跟踪对象的视觉跟踪器进入不正确的(非目标攻击,UA)或指定的(目标攻击,TA)轨迹。

  • 我们通过调整现有攻击(即 FGSM、BIM、C&W)提出了几种基本攻击,并进一步进行实证研究,以更好地理解对抗性攻击对实时对象跟踪的挑战。

  • 我们提出了一种新的空间感知在线增量攻击(SPARK)方法,可以有效地为实时 VOT 生成更多难以察觉的扰动。

  • 与基本方法一致,我们的深入评估证明 了SPARK在UA和TA。SPARK 生成的攻击还表现出对 SiamRPN 跟踪器在线更新变体的强大可转移性。

相关工作

与这些作品不同,我们的攻击旨在通过有限的在线数据访问来误导视觉跟踪器,即未来的帧不可用,过去的帧也不能被攻击。在与我们最相关的工作中, [ 43 ]提出了在整个视频数据可用并且多个帧的扰动可以联合调整的情况下,基于范数的攻击生成用于动作识别的稀疏扰动。为了进一步显示差异,我们使用[ 43 ]实现了跟踪攻击,并将其与我们的评估方法进行比较。 [ 25 ]攻击了SiamRPN跟踪器 [ 24 ]中也使用的区域提议网络(RPN) 。然而,这种攻击的重点是欺骗图像检测器来预测不准确的边界框,因此不能直接用于攻击旨在通过在线视频误导错误轨迹的跟踪器。 [ 42 ]提出了通过独立寻址每一帧的视频对象检测攻击,这不适合跟踪器通常以实时速度运行的在线跟踪。另一项相关工作[ 26 ]研究了在强化学习环境中何时攻击代理,并使用对动作的偏好程度来决定关键攻击时间。相比之下,这项工作主要探讨如何利用时间约束在线生成难以察觉的有效扰动来误导实时跟踪器

据我们所知,到目前为止,关于攻击在线对象跟踪的研究还很有限。 [ 44 ]生成物理对抗纹理,使 GOTURN 跟踪器 [ 17 ]始终错误地跟踪对象。与这项工作不同的是,我们打算对对象跟踪的对抗性攻击进行全面的研究,并提出有效的攻击来误导在线实时跟踪器沿指定的轨迹移动,并产生较小的扰动。由于目标跟踪器通常嵌入在移动控制系统中,因此对 VOT 特定领域对抗问题的深入分析和理解可能是加速实际应用的关键。此外,我们研究的主题模型,即基于SiamRPN 的跟踪器,在各种基准[ 10、45、20 ]上实现了最先进的性能, 并且获得了比 GOTURN 跟踪器更高的精度,因此将更具挑战性攻击时。

https://arxiv.org/abs/1904.11042

我们的基本攻击 (BA) 和空间感知在线增量攻击 (SPARK) 的分析。(a)显示攻击后目标位置与预测物体位置之间的距离。距离越小,意味着攻击越有效。(b) 显示每帧的平均绝对扰动。较小的 MAP 会导致不易察觉的扰动较少。(c) 展示了第 49 帧处 4 种攻击方法的对抗性扰动、相应的对抗性示例以及 SiamRPN-Alex 的响应图。(d) 包括从第 41 帧到第 49 帧的增量扰动以及每帧的损失值。

实证研究

1)对每个帧应用基本攻击的攻击效果如何?2)视频中时间帧的影响如何?为了回答这些问题,我们对最先进的跟踪器(例如 SiamRPN-Alex * )执行两种基本的有针对性的攻击:

表 1显示了 BA-E、BA-R1 和 BA-R2 在 TA 下攻击 OTB100 上基于 SiamRPN-Alex 的跟踪器的成功率、平均绝对扰动和每帧平均迭代次数。我们看到:1)通过 BIM 和 C&W 的 BA-E 方法通过攻击每一帧获得了很高的成功率。然而,它们的扰动很大,并且用 10 次迭代来攻击每一帧非常耗时,并且超出了实时跟踪器的范围。FGSM虽然高效,但成功率却低得多。2)随机攻击10%帧,即BA-R1,比BA-E快10倍左右。然而,成功率显着下降。3)BA-R2方法每10帧攻击一次,效率较高,但牺牲了成功率。与BA-R1相比,在相同的攻击率,即10%帧数的情况下,BA-R2的成功率高于BA-R1。例如,基于BIM,BA-R2的成功率是原来的两倍以上。它推断,由于时间平滑性,相邻 10 帧的扰动具有一定的可传递性。

基于 BIM 的案例研究如图1所示 ,其中我们使用三种 BA 攻击来误导基于 SiamRPN-Alex 的跟踪器来定位场景左上角的感兴趣对象(图 1 中的目标位置 ( c ))。我们没有遵循标准的 Siamese 跟踪管道,而是根据地面实况裁剪搜索区域,并确保对象始终位于搜索区域的中心。我们显示了目标位置(图1 (a))和跟踪结果之间的距离 ,以及 帧级别的 平均绝对扰动(MAP)(图 1 (b))。我们得出与表 1一致的结论。BA-E是最简单的解决方案,在某个时刻(距目标位置距离小于20)MAP在5左右时可以成功攻击跟踪器,但攻击效率较低,不适合实时跟踪。此外,根据图 1 (c),扰动很大并且是可察觉的。结果回答了第一个问题:对每一帧进行攻击并不有效,即耗时且MAP较大。

考虑帧之间的时间特性,如果攻击可以在相邻帧之间转移,我们可以只攻击某些帧,同时减少开销,例如BA-R1和BA-R2。不幸的是,表1和图 1中的结果 表明BA-R1和BA-R2仅在执行攻击的特定帧上工作。

结果回答了第二个问题:由于视频中的动态场景,BA 产生的扰动很难直接转移到下一帧(参见 BA-R1 和 BA-R2 的结果)。

在线增量攻击

根据基本攻击的实证研究结果,我们发现直接针对每一帧进行攻击是无效的。由于帧是连续的并且附近的帧非常相似,我们的深入分析发现附近的帧之间存在可转移性。然而,如何有效地利用先前帧的扰动,同时在攻击新的帧时保持不易察觉,这是值得怀疑的。一种直接的方法是将以前的扰动添加到新的计算扰动中,这将提高攻击的成功率,但会导致严重的扭曲。为了解决这个问题,我们提出了在线增量攻击(SPARK),它可以更有效地生成更多难以察觉的对抗性示例以进行跟踪。SPARK 的直觉是,我们仍然攻击每一帧,但通过优化将先前的扰动应用于新帧,并结合小但有效的增量扰动。

增量扰动的时空稀疏性: 增量扰动沿着空间和时间逐渐变得稀疏(见图 1 (d))。与 BA 方法相比,这有助于产生更多难以察觉的扰动。此外,SPARK在所有帧中获得最小的MAP,并且在OTB100上比BA-E更高的成功率(见图 1 (b))。
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152652.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式--模板方法外观模式

模板方法模式 场景:需使用代码方式实现,考完试后,将各个学生的试卷及答案誊抄一份。 假如有两个学生的试卷誊抄完毕. // 学生A public class TestPaperA {// 试题1public void testQuestion1() {System.out.println("问题一:XXXXXXXX…

《opencv实用探索·一》QT+opencv实现图片拼接和Mat转QImage

本文利用opencv实现了几个好用的功能,包含两个文件,如下: 源码放在文章末尾 imageProcessing类包含三个功能: 1、图像拼接 cv::Mat imageMosaic(cv::Mat mat1, cv::Mat mat2, MosaicMode mosaicMode);mat1和mat2为两个待拼接的…

Matplotlib实现Label及Title都在下方的最佳姿势

Matplotlib实现Label及Title都在下方的最佳姿势 1. 问题背景2. 基本思想(可以不看)3. 方法封装4. 调用实例5. 总结6. 起飞 1. 问题背景 用python绘制下面这种图的时候,一般用xlable作为子图的标题,这是因为plt.title()方法绘制的…

Android studio run 手机或者模拟器安装失败,但是生成了debug.apk

错误信息如下:Error Installation did not succeed. The application could not be installed:List of apks 出现中文乱码; 我首先尝试了打包,能正常安装,再次尝试了debug的安装包,也正常安装&#xff1…

再谈谷歌GMS认证之Android 13

写在前面的话 2023年来到一个新的公司,传说中的做互联网金融即将上市的高大上公司。 入职后才发现就是做pos机设备的一个小厂 哎,什么命啊! 工作和手机开发的工作重合度可以达到95%以上,我不想做手机,偏偏又干上…

计算机基础知识54

ORM的介绍 # ORM是什么? 我们在使用Django框架开发web应用的过程中,不可避免地会涉及到数据的管理操作(增、删、改、查),而一旦谈到数据的管理操作,就需要用到数据库管理软件,例如mysql、oracle…

Ubuntu20.0中安装Gradle

下载Gradle到temp文件夹 wget https://services.gradle.org/distributions/gradle-8.3-bin.zip -P /tmp 然后解压文件到/opt/gradle目录 sudo unzip -d /opt/gradle /tmp/gradle-8.3.zip 配置Gradle环境变量 接下来我们会创建一个gradle.sh文件来保存Gradle的环境变量 sudo…

ubuntu20.04蓝牙连接airpods

ubuntu20.04蓝牙连接airpods 解禁蓝牙安装blueman设置模式连接上没有声音的问题 解禁蓝牙 sudo rmmod btusb sleep 1 sudo modprobe btusb sudo /etc/init.d/bluetooth restart安装blueman sudo apt install blueman sudo apt-get install pulseaudio-module-bluetooth sudo …

『亚马逊云科技产品测评』活动征文|构建生态农场家禽系统

『亚马逊云科技产品测评』活动征文|构建生态农场家禽系统 授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 前…

VBA如何快速识别Excel单元格中的文本数字

Excel中一种非常特殊的数字,这些数字看似数字,其实是文本格式(下文简称为文本数字),在单元格的左上角会有一个绿色小三角作为标志,如B1:B3单元格。 在编程时为什么需要区分普通数字和文本数字呢&#xff…

SVG圆形 <circle>的示例代码

本专栏是汇集了一些HTML常常被遗忘的知识,这里算是温故而知新,往往这些零碎的知识点,在你开发中能起到炸惊效果。我们每个人都没有过目不忘,过久不忘的本事,就让这一点点知识慢慢渗透你的脑海。 本专栏的风格是力求简洁…

.NET 8.0 AOT 教程 和使用 和 .NET ORM 操作

NET AOT编译是一种.NET运行时的编译方式,它与传统的JIT编译方式不同。在传统的JIT编译中,.NET应用程序的代码在运行时才会被编译成本地机器码,而在AOT编译中,代码在运行之前就被提前编译成本地机器码。这样可以在代码运行的时候不…

键盘映射笔记

dumpkeys命令用于显示当前系统中定义的键盘映射表。它可以帮助用户查看和理解系统中的键盘布局和键盘映射规则。 当用户执行dumpkeys命令时,它会读取系统中的键盘映射表文件(通常是/etc/keymaps或/etc/console/boottime.kmap.gz),…

【C#二开业务冠邑】通过界面查看数据来源

前言 重构框架(CS【C#】转BS【Java】)时,突然发现公司的代码和数据库,有部分都没有写注释,嘎嘎,这不非常影响开发效率,于是乎,开始帮公司整理表结构和数据来源,也从而加…

3D全景视角,足不出户感知真实场景的魅力

近年来,随着科技的快速发展,普通的平面静态视角已经无法满足我们了,不管是视角框架的限制还是片面的环境展示,都不足以让我们深入了解场景环境。随着VR全景技术的日益成熟,3D全景技术的出现为我们提供了全新的视觉体验…

汽车标定技术--A2L格式分析

目录 1.A2L由来 2.A2L格式 2.1 PROJECT 2.2 MODULE中包含的内容 3. INCA和CANape兼容吗? 最近有朋友用Vector ASAP2Editor编译的A2L文件在INCA7.4中无法识别,我记得以前做的时候是可以识别的,难不成最近有什么变动吗?出于好…

Django 入门学习总结2 创建一个投票系统

通过学习,我们可以实现一个简单的投票系统。这个投票系统有两部分组成。 公共部分,公众可以查看和进行投票。管理员可以进行增加、删除、修改投票信息。 这里投票系统Python语言版本为3.10.13,Django Web框架版本为4.2.7。 投票系统的实现…

系列二、Lock接口

一、多线程编程模板 线程 操作 资源类 高内聚 低耦合 二、实现步骤 1、创建资源类 2、资源类里创建同步方法、同步代码块 三、12306卖票程序 3.1、synchronized实现 3.1.1、Ticket /*** Author : 一叶浮萍归大海* Date: 2023/11/20 8:54* …

试用无线调试器PowerDebugger小记

试用无线调试器PowerDebugger小记 文章目录 试用无线调试器PowerDebugger小记引言准备软硬件环境PowerDebugger 无线调试器EVB-YTM32B1LE0-Q64 开发板 开始调试小结参考文献 引言 多年前调试智能车时,抱着电脑连着小车在跑道上一边跑一边看数据的经历,让…

计算机毕业设计选题推荐-家庭理财微信小程序/安卓APP-项目实战

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…