目标识别数据集互相转换——xml、txt、json数据格式互转

VOC数据格式与YOLO数据格式互转

1.VOC数据格式

VOC(Visual Object Classes)是一个常用的计算机视觉数据集,它主要用于对象检测、分类和分割任务。VOC的标注格式,也被许多其他的数据集采用,因此理解这个数据格式是很重要的。下面是一个详细的介绍:

一个典型的VOC数据集主要包括以下两个主要组成部分:

  1. JPEGImages:这个文件夹包含所有的图片文件,通常都是jpg格式。
  2. Annotations:这个文件夹包含每张图片对应的标注文件。每个标注文件都是xml格式的,其中包含了图片中每个对象的信息,如类别、位置等。

格式如下:

<annotation><folder>图像文件所在文件夹名称</folder><filename>图像文件名</filename><source>...省略...</source><size><width>图像宽度</width><height>图像高度</height><depth>图像深度,例如RGB图像深度为3</depth></size><segmented>省略...</segmented><object><name>物体类别名称</name><pose>省略...</pose><truncated>是否被截断(0表示未被截断,1表示被截断)</truncated><difficult>是否难以识别(0表示容易识别,1表示难以识别)</difficult><bndbox><xmin>物体边界框左上角的x坐标</xmin><ymin>物体边界框左上角的y坐标</ymin><xmax>物体边界框右下角的x坐标</xmax><ymax>物体边界框右下角的y坐标</ymax></bndbox></object>...其他物体的标注信息...
</annotation>

在标注文件中,可以包含多个<object>标签,每个标签都表示图片中的一个物体。每个物体的类别名称和位置信息都包含在这个标签中。位置信息通过一个矩形边界框来表示,该框由左上角和右下角的坐标确定。

2.YOLO数据格式

数据格式:label_index,cx, cy,w,h
label_index :为标签名称在标签数组中的索引,下标从 0 开始。
cx:标记框中心点的 x 坐标,数值是原始中心点 x 坐标除以 图宽 后的结果。
cy:标记框中心点的 y 坐标,数值是原始中心点 y 坐标除以 图高 后的结果。
w:标记框的 宽,数值为 原始标记框的 宽 除以 图宽 后的结果。
h:标记框的 高,数值为 原始标记框的 高 除以 图高 后的结果。

xml转txt

import os
import glob
import argparse
import random
import xml.etree.ElementTree as ET
from PIL import Image
from tqdm import tqdmdef get_all_classes(xml_path):xml_fns = glob.glob(os.path.join(xml_path, '*.xml'))class_names = []for xml_fn in xml_fns:tree = ET.parse(xml_fn)root = tree.getroot()for obj in root.iter('object'):cls = obj.find('name').textclass_names.append(cls)return sorted(list(set(class_names)))def convert_annotation(img_path, xml_path, class_names, out_path):output = []im_fns = glob.glob(os.path.join(img_path, '*.jpg'))for im_fn in tqdm(im_fns):if os.path.getsize(im_fn) == 0:continuexml_fn = os.path.join(xml_path, os.path.splitext(os.path.basename(im_fn))[0] + '.xml')if not os.path.exists(xml_fn):continueimg = Image.open(im_fn)height, width = img.height, img.widthtree = ET.parse(xml_fn)root = tree.getroot()anno = []xml_height = int(root.find('size').find('height').text)xml_width = int(root.find('size').find('width').text)if height != xml_height or width != xml_width:print((height, width), (xml_height, xml_width), im_fn)continuefor obj in root.iter('object'):cls = obj.find('name').textcls_id = class_names.index(cls)xmlbox = obj.find('bndbox')xmin = int(xmlbox.find('xmin').text)ymin = int(xmlbox.find('ymin').text)xmax = int(xmlbox.find('xmax').text)ymax = int(xmlbox.find('ymax').text)cx = (xmax + xmin) / 2.0 / widthcy = (ymax + ymin) / 2.0 / heightbw = (xmax - xmin) * 1.0 / widthbh = (ymax - ymin) * 1.0 / heightanno.append('{} {} {} {} {}'.format(cls_id, cx, cy, bw, bh))if len(anno) > 0:output.append(im_fn)with open(im_fn.replace('.jpg', '.txt'), 'w') as f:f.write('\n'.join(anno))random.shuffle(output)train_num = int(len(output) * 0.9)with open(os.path.join(out_path, 'train.txt'), 'w') as f:f.write('\n'.join(output[:train_num]))with open(os.path.join(out_path, 'val.txt'), 'w') as f:f.write('\n'.join(output[train_num:]))def parse_args():parser = argparse.ArgumentParser('generate annotation')parser.add_argument('--img_path', type=str, help='input image directory',default= "data/jpg/")parser.add_argument('--xml_path', type=str, help='input xml directory',default= "data/xml/")parser.add_argument('--out_path', type=str, help='output directory',default= "data/dataset/")args = parser.parse_args()return argsif __name__ == '__main__':args = parse_args()class_names = get_all_classes(args.xml_path)print(class_names)convert_annotation(args.img_path, args.xml_path, class_names, args.out_path)

txt转xml

from xml.dom.minidom import Document
import os
import cv2def makexml(picPath, txtPath, xmlPath):  # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径dic = {'0': "ship",  # 创建字典用来对类型进行转换'1': "car_trucks",  # 此处的字典要与自己的classes.txt文件中的类对应,且顺序要一致'2' :'person','3': 'stacking_area','4': 'car_forklift','5': 'unload_car','6': 'load_car','7': 'car_private',}files = os.listdir(txtPath)for i, name in enumerate(files):xmlBuilder = Document()annotation = xmlBuilder.createElement("annotation")  # 创建annotation标签xmlBuilder.appendChild(annotation)txtFile = open(txtPath + name)print(txtFile)txtList = txtFile.readlines()img = cv2.imread(picPath + name[0:-4] + ".png")Pheight, Pwidth, Pdepth = img.shapefolder = xmlBuilder.createElement("folder")  # folder标签foldercontent = xmlBuilder.createTextNode("driving_annotation_dataset")folder.appendChild(foldercontent)annotation.appendChild(folder)  # folder标签结束filename = xmlBuilder.createElement("filename")  # filename标签filenamecontent = xmlBuilder.createTextNode(name[0:-4] + ".png")filename.appendChild(filenamecontent)annotation.appendChild(filename)  # filename标签结束size = xmlBuilder.createElement("size")  # size标签width = xmlBuilder.createElement("width")  # size子标签widthwidthcontent = xmlBuilder.createTextNode(str(Pwidth))width.appendChild(widthcontent)size.appendChild(width)  # size子标签width结束height = xmlBuilder.createElement("height")  # size子标签heightheightcontent = xmlBuilder.createTextNode(str(Pheight))height.appendChild(heightcontent)size.appendChild(height)  # size子标签height结束depth = xmlBuilder.createElement("depth")  # size子标签depthdepthcontent = xmlBuilder.createTextNode(str(Pdepth))depth.appendChild(depthcontent)size.appendChild(depth)  # size子标签depth结束annotation.appendChild(size)  # size标签结束for j in txtList:oneline = j.strip().split(" ")object = xmlBuilder.createElement("object")  # object 标签picname = xmlBuilder.createElement("name")  # name标签namecontent = xmlBuilder.createTextNode(dic[oneline[0]])picname.appendChild(namecontent)object.appendChild(picname)  # name标签结束pose = xmlBuilder.createElement("pose")  # pose标签posecontent = xmlBuilder.createTextNode("Unspecified")pose.appendChild(posecontent)object.appendChild(pose)  # pose标签结束truncated = xmlBuilder.createElement("truncated")  # truncated标签truncatedContent = xmlBuilder.createTextNode("0")truncated.appendChild(truncatedContent)object.appendChild(truncated)  # truncated标签结束difficult = xmlBuilder.createElement("difficult")  # difficult标签difficultcontent = xmlBuilder.createTextNode("0")difficult.appendChild(difficultcontent)object.appendChild(difficult)  # difficult标签结束bndbox = xmlBuilder.createElement("bndbox")  # bndbox标签xmin = xmlBuilder.createElement("xmin")  # xmin标签mathData = int(((float(oneline[1])) * Pwidth + 1) - (float(oneline[3])) * 0.5 * Pwidth)xminContent = xmlBuilder.createTextNode(str(mathData))xmin.appendChild(xminContent)bndbox.appendChild(xmin)  # xmin标签结束ymin = xmlBuilder.createElement("ymin")  # ymin标签mathData = int(((float(oneline[2])) * Pheight + 1) - (float(oneline[4])) * 0.5 * Pheight)yminContent = xmlBuilder.createTextNode(str(mathData))ymin.appendChild(yminContent)bndbox.appendChild(ymin)  # ymin标签结束xmax = xmlBuilder.createElement("xmax")  # xmax标签mathData = int(((float(oneline[1])) * Pwidth + 1) + (float(oneline[3])) * 0.5 * Pwidth)xmaxContent = xmlBuilder.createTextNode(str(mathData))xmax.appendChild(xmaxContent)bndbox.appendChild(xmax)  # xmax标签结束ymax = xmlBuilder.createElement("ymax")  # ymax标签mathData = int(((float(oneline[2])) * Pheight + 1) + (float(oneline[4])) * 0.5 * Pheight)ymaxContent = xmlBuilder.createTextNode(str(mathData))ymax.appendChild(ymaxContent)bndbox.appendChild(ymax)  # ymax标签结束object.appendChild(bndbox)  # bndbox标签结束annotation.appendChild(object)  # object标签结束f = open(xmlPath + name[0:-4] + ".xml", 'w')xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')f.close()if __name__ == "__main__":picPath = "data/images/"  # 图片所在文件夹路径,后面的/一定要带上txtPath = "data/labels/"  # txt所在文件夹路径,后面的/一定要带上xmlPath = "data/xml/"  # xml文件保存路径,后面的/一定要带上makexml(picPath, txtPath, xmlPath)

json转txt

import os
import numpy as np
import json
from glob import glob
import cv2
from sklearn.model_selection import train_test_split
from os import getcwdclasses = ["0","1","2"]
# 1.标签路径
labelme_path = r"dataset/"
isUseTest = False  # 是否创建test集
# 3.获取待处理文件
files = glob(labelme_path + "*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
# print(files)
if isUseTest:trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)
else:trainval_files = filestrain_files = filesdef convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)wd = getcwd()
# print(wd)def ChangeToYolo5(files, txt_Name):if not os.path.exists('tmp/'):os.makedirs('tmp/')list_file = open('tmp/%s.txt' % (txt_Name), 'w')for json_file_ in files:print(json_file_)json_filename = labelme_path + json_file_ + ".json"imagePath = labelme_path + json_file_ + ".png"list_file.write('%s/%s\n' % (wd, imagePath))out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')json_file = json.load(open(json_filename, "r", encoding="utf-8"))height, width, channels = cv2.imread(labelme_path + json_file_ + ".png").shapefor multi in json_file["shapes"]:points = np.array(multi["points"])xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0label = multi["label"]if xmax <= xmin:passelif ymax <= ymin:passelse:cls_id = classes.index(label)b = (float(xmin), float(xmax), float(ymin), float(ymax))bb = convert((width, height), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')print(json_filename, xmin, ymin, xmax, ymax, cls_id)ChangeToYolo5(train_files, "train")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15172.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EC200U-CN学习(三)

EC200U系列内置丰富的网络协议&#xff0c;集成多个工业标准接口&#xff0c;并支持多种驱动和软件功能&#xff08;适用于Windows 7/8/8.1/10、Linux和Android等操作系统下的USB驱动&#xff09;&#xff0c;极大地拓展了其在M2M领域的应用范围&#xff0c;如POS、POC、ETC、共…

【Android知识笔记】UI体系(二)

什么是UI线程? 常说的UI线程到底是哪个线程?UI线程一定是主线程吗? 下面先给出两条确定的结论: UI线程就是刷新UI所在的线程UI是单线程刷新的关于第二条为什么UI只能是单线程刷新的呢?道理很简单,因为多线程访问的话需要加锁,太卡,所以一般系统的UI框架都是采用单线程…

用pip给python安装第三方包

2023年7月30日&#xff0c;周日晚上 目录 搜索包安装包升级包卸载包查看安装了哪些包查看指定的包的详细信息查看pip把某个包安装到了哪里 搜索包 现在只能去专门的网站搜索python的第三方包了 Search results PyPI 安装包 通过下面这条指令就可以安装包 pip install pac…

c/c++内存管理

我们先了解一下c/c中的程序内存区域划分&#xff1a; 栈——非静态局部变量、函数参数、返回值等&#xff0c;栈是向下增长的。 内存映射段——高效的I/O映射方式&#xff0c;用于装载一个共享的动态内存库。用户可使用系统接口 创建共享共享内存&#xff0c;做进程间通信。 …

Django教程_编程入门自学教程_菜鸟教程-免费教程分享

教程简介 Django是一个开放源代码的Web应用框架&#xff0c;由Python写成。采用了MTV的框架模式&#xff0c;即模型M&#xff0c;视图V和模版T。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的&#xff0c;即是CMS&#xff08;内容管理系统&#xf…

深入理解设计模式:设计模式定义、设计原则以及组织编目

文章目录 一、设计模式1.1 设计模式的起源1.2 设计模式的定义1.3 记录要素1.4 合理使用模式 二、设计模式的六大原则2.1 开闭原则(Open-Closed Principle, OCP)2.1.1 定义2.1.2 原则分析2.1.3 开闭原则的意义所在 2.2 单一职责原则(Single Responsibility Principle, SRP)2.4.1…

Tomcat的基本使用,如何用Maven创建Web项目、开发完成部署的Web项目

Tomcat 一、Tomcat简介二、Tomcat基本使用三、Maven创建Web项目3.1 Web项目结构3.2开发完成部署的Web项目3.3创建Maven Web项目3.3.1方式一3.3.2方式二&#xff08;个人推荐&#xff09; 总结 一、Tomcat简介 Web服务器&#xff1a; Web服务器是一个应用程序&#xff08;软件&…

android数据的储存、文件的储存、SharedPreferences储存、SQLite的基本用法

一、文件的储存 1、将数据储存到文件中 Context类中提供了openfileOutput()方法&#xff0c;用来获取一个文件流&#xff0c;这个方法接收两个参数&#xff0c;第一个参数是文件名&#xff0c;在文件创建的时候使用的就是这个名称&#xff0c;注意这里指定的文件名不可以包含…

AE基础知识

一、基础概念 1.AE的用途&#xff08;合成&#xff09; AE是一款用于高端视频特效系统的专业特效合成软件&#xff0c;通过对收集到的素材进行数字化的编辑组合到一起&#xff0c;进行艺术性的再加工后得到的最终作品。 2.帧 帧——就是影像动画中最小单位的单幅影像画面&a…

FPGA XDMA 中断模式实现 PCIE3.0 AD7606采集 提供2套工程源码和QT上位机源码

目录 1、前言2、我已有的PCIE方案3、PCIE理论4、总体设计思路和方案AD7606数据采集和缓存XDMA简介XDMA中断模式QT上位机及其源码 5、vivado工程1--BRAM缓存6、vivado工程2--DDR4缓存7、上板调试验证8、福利&#xff1a;工程代码的获取 1、前言 PCIE&#xff08;PCI Express&am…

设计模式什么情况下适合使用呢?

很多情况下设计模式是一种经过验证的解决特定问题的最佳实践。设计模式提供了一种标准化的方式来解决常见的软件设计问题&#xff0c;并提供了一种可重用的解决方案。设计模式可以帮助开发人员编写具有高可维护性、可扩展性和可重用性的代码。 设计模式适用于以下情况&#xf…

redis之Bitmap

位图数据结构其实并不是一个全新的玩意&#xff0c;我们可以简单的认为就是个数组&#xff0c;只是里面的内容只能为0或1而已(二进制位数组)。 GETBIT用于返回位数组在偏移量上的二进制位的值。值得我们注意的是&#xff0c;GETBIT的时间复杂度是O(1)。 GETBIT命令的执行过程如…

Ubuntu系统adb开发调试问题记录

Ubuntu系统adb开发调试问题记录 一、adb devices no permissions二、自定义adb server端口三、动态库目录四、USB抓包 一、adb devices no permissions lsusb -t 设备树直观地查看设备的Bus ID和Device Num&#xff0c;lsusb找到对应的PID和VID编辑udev规则 sudo vim /etc/ud…

百度文心千帆大模型平台:企业级大模型服务的新航标

随着人工智能和大数据的快速发展&#xff0c;大模型平台正越来越受到各大企业和个人开发者的青睐。本文将以百度最新推出的文心千帆大模型平台为例&#xff0c;深入分析其在国家战略布局&#xff0c;经济发展趋势&#xff0c;市场变化动向和技术研发周期等方面的影响和应用。同…

JavaScript--Promise类

在学习Promise类内容前&#xff0c;你需要先了解什么是异步编程&#xff0c;可以参考JavaScript--异步编程,JavaScript--定时事件 Promise介绍&#xff1a; Promise是JavaScript中用于处理异步操作的对象。它代表着一个异步操作的最终完成&#xff08;或失败&#xff09;以及…

matplotlib从起点出发(6)_Tutorial_6_Animations

1 在matplotlib中使用动画 基于其绘图功能&#xff0c;matplotlib还提供了一个使用动画模块生成动画animation的接口。动画是一系列帧&#xff0c;其中每个帧对应于图形Figure 上的一个绘图。本教程介绍了有关如何创建此类动画的一般准则以及可用的不同选项。 import matplot…

php 服务器 http状态码为499的解决办法

原因&#xff1a;某些http请求服务端处理太慢&#xff0c;影响了其他http请求。 1.配置php.ini的max_execution_time和max_input_time。但是改后还是报了不少的499。 &#xff08;set_time_limit()函数和配置指令max_execution_time只影响脚本本身执行的时间。任何发生在诸如…

行为型设计模式之观察者模式【设计模式系列】

系列文章目录 C技能系列 Linux通信架构系列 C高性能优化编程系列 深入理解软件架构设计系列 高级C并发线程编程 设计模式系列 期待你的关注哦&#xff01;&#xff01;&#xff01; 现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everythi…

解决报错Avoid using non-primitive value as key, use string/number value instead.

找到图中画圈的文件这个错误信息的意思是要避免使用非基本值作为键&#xff0c;而是使用字符串/数字值代替。 [1] 这个错误通常出现在使用<el-select>中的<el-option>进行循环遍历值时。 [2] 这个错误的解决方案是检查是否有重复的键值&#xff0c;并确保使用字符…

【Python】aio Queue 的超时封装

一般封装生产者消费者模型的时候会用到 asyncio.Queue&#xff0c;queue 的 put 和 get 操作都是阻塞的&#xff08;当然可以通过 _nowait 方法改为非阻塞&#xff09;&#xff0c;取数据的时候如果没数据则会一直阻塞。下面通过计数的方法给 asyncio.Queue 添加超时操作&#…