【分布鲁棒、状态估计】分布式鲁棒优化电力系统状态估计研究[几种算法进行比较](Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2 

2.3 算例3 

2.4 算例4 

2.5 算例5 

2.6 算例6 

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

 摘要:
能源市场的自由化、可再生能源的渗透、先进的计量能力以及对情境感知的需求,都要求进行系统范围的电力系统状态估计(PSSE)。然而,由于互联的复杂性、实时监测中的通信瓶颈、区域披露政策和可靠性问题,实施集中式估计器实际上是不可行的。在这种背景下,分布式PSSE方法在一个统一且系统的框架下进行了研究。基于交替方向乘子法的新型算法被开发出来。它利用现有的PSSE求解器,尊重隐私政策,具有较低的通信负载,并且即使在缺乏局部可观察性的情况下,其收敛到集中式估计的特性也能得到保证。除了传统的最小二乘PSSE,这个分散式框架还容纳了一个强健的状态估计器。通过利用与压缩采样进展的有趣联系,后者联合估计状态并识别损坏的测量结果。这些新颖的算法在IEEE 14、118节点和4200节点的基准测试中进行了数值评估。模拟结果表明,通过几个区域间的交流,可以达到可接受的准确性,而且能够超越最大残差测试。

原文摘要:

Abstract:

Deregulation of energy markets, penetration of renewables, advanced metering capabilities, and the urge for situational awareness, all call for system-wide power system state estimation (PSSE). Implementing a centralized estimator though is practically infeasible due to the complexity scale of an interconnection, the communication bottleneck in real-time monitoring, regional disclosure policies, and reliability issues. In this context, distributed PSSE methods are treated here under a unified and systematic framework. A novel algorithm is developed based on the alternating direction method of multipliers. It leverages existing PSSE solvers, respects privacy policies, exhibits low communication load, and its convergence to the centralized estimates is guaranteed even in the absence of local observability. Beyond the conventional least-squares based PSSE, the decentralized framework accommodates a robust state estimator. By exploiting interesting links to the compressive sampling advances, the latter jointly estimates the state and identifies corrupted measurements. The novel algorithms are numerically evaluated using the IEEE 14-, 118-bus, and a 4200-bus benchmarks. Simulations demonstrate that the attainable accuracy can be reached within a few inter-area exchanges, while largest residual tests are outperformed.

电网监控基础设施现代化有两个关键问题:首先,PSSE应在互连级别执行。然而,互连可能包括数千条总线,而每个状态通常需要 2-3 次测量。还需要实时处理以及对损坏数据的弹性,这使得集中状态估计在计算上变得强大。此外,集中式方法容易受到攻击,并且在涉及政策和隐私问题时不灵活。其次,电网的分散信息处理可以在多个层次结构中执行[11]:PMU测量可以通过相量数据集中器(PDC)处理[26];传统的监控和数据采集(SCADA)测量以及PDC融合数据可以通过ISO进行汇总;最后,来自ISO的估计可以在互连级别合并。这些考虑证实了分布式PSSE和不良数据分析对于实现智能电网愿景至关重要。

第二节回顾了用于PSSE和不良数据分析的现有分布式方法。PSSE问题,其独特的要求和挑战在第三节中重点介绍。在第四节中,开发了一种新的分布式PSSE方法。基于乘法器的交替方向方法[2],实现了本地控制中心之间的系统合作,具有独特的功能:它促进了几种实用的PSSE公式;它降低了区域间信息交换的开销;无论局部可观测性或参数调整如何,都可以保证其收敛性;并且生成的算法可以由本地控制中心已经在使用的求解器执行。在此框架的基础上,第五节推导出了一个强大的去中心化估算器。与传统的两步不良数据分析不同,新方法以分散的方式实现Huber的M估计器[1],而PSSE与不良数据删除一起完成。利用引入的不良数据向量的稀疏性,新算法通过几次迭代增加了标准PSSE求解器。第六节对新颖的鲁棒去中心化算法进行了数值评估,第七节对本文进行了总结。

📚2 运行结果

2.1 算例1

导出结果图:

然后剩下的算例直接导出结果图,更清晰一点。

2.2 算例2 

2.3 算例3 

2.4 算例4 

2.5 算例5 

2.6 算例6 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

V. Kekatos and G. B. Giannakis, "Distributed Robust Power System State Estimation," in IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1617-1626, May 2013, doi: 10.1109/TPWRS.2012.2219629.

🌈4 Matlab代码、数据、文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15150.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于BIM+AI的建筑能源优化模型【神经网络】

推荐:用 NSDT设计器 快速搭建可编程3D场景。 AEC(建筑、工程、施工)行业的BIM 技术,允许在实际施工开始之前虚拟地建造建筑物; 这带来了许多有形和无形的好处:减少成本超支、更有效的协调、增强决策权等等。…

C#实现数据库数据变化监测(sqlservermysql)

监测数据库表数据变化,可实现数据库同步(一主一从(双机备份),一主多从(总部数据库,工厂1,工厂2,工厂数据合并到总部数据)) sqlserver 启用数据库…

Flowable-服务-消息任务

文章目录 定义图形标记XML内容集成Rabbitmq引入pom包配置rabbitmq 操作界面 定义 Mq 任务不是 BPMN 2.0 规范定义的官方任务,在 Flowable 中,Mq 任务是作为一种特殊的服务 任务来实现的,主要做Mq消息发送。 图形标记 由于 Mq 任务不是 BPM…

用CSS和HTML写一个水果库存静态页面

HTML代码&#xff1a; <!DOCTYPE html> <html> <head><link rel"stylesheet" type"text/css" href"styles.css"> </head> <body><header><h1>水果库存</h1></header><table>…

MFC图表控件high-speed-charting的使用

high-speed-charting是MFC上的开源图表库,Teechart的替代品。 high-speed-charting的下载地址 https://www.codeproject.com/Articles/14075/High-speed-Charting-Control 特性 High-speed drawing (when axis is fixed) which allows fast plotting of dataUnlimited number …

list与sort()

运行代码&#xff1a; //list与sort() #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}friend istre…

【Golang 接口自动化01】使用标准库net/http发送Get请求

目录 发送Get请求 响应信息 拓展 资料获取方法 发送Get请求 使用Golang发送get请求很容易&#xff0c;我们还是使用http://httpbin.org作为服务端来进行演示。 package mainimport ("bytes""fmt""log""net/http""net/url&qu…

Shell 排序法 - 改良的插入排序

说明 插入排序法由未排序的后半部前端取出一个值&#xff0c;插入已排序前半部的适当位置&#xff0c;概念简单但速度不快。 排序要加快的基本原则之一&#xff0c;是让后一次的排序进行时&#xff0c;尽量利用前一次排序后的结果&#xff0c;以加快排序的速度&#xff0c;Shel…

ZLMediaKit+wvp-GB28181-pro 安装文档

文章目录 前言1. 安装zlm1.1 镜像说明1.2 docker安装1.2.1 docker安装命令1.2.2 docker-compose安装 1.3. zlm配置和日志重点说明 2. 安装wvp2.1 目录结构说明2.1.1 导入idea2.1.2 sql文件夹自带初始化库脚本2.1.3 进入web_src 编译静态资源2.1.4 修改resources配置 2.2 wvp 启…

DHCP中继代理原理(第二十八课)

当客户机和DHCP服务器不在一个广播域时,DHCP服务器无法接收到客户机的DHCP discover广播数据包,客户机就无法获得IP地址 第一步配置DHCP服务器的信息 <Huawei>u t m //清除日志 Info: Current terminal monitor is off. <Huawei>sys [Huawei]sysname DHCP-R…

分布式异步任务处理组件(二)

一些关键点的设计脑暴记录----very important&#xff01;&#xff01;&#xff01; 首先&#xff0c;任务存储交给kafka&#xff0c;由节点负责写入kafka&#xff0c;acks1&#xff1b;失败重试&#xff1b;透传kafka的提交可靠性&#xff0c;保证任务提交成功&#xff1b;后…

c语言locale.h简介

<locale.h>提供的函数用于控制c标准库中对于不同的地区行为不一样的部分。&#xff08;地区通常是国家或者某种特定语言的地理区域&#xff09; 在标准库里&#xff0c;依赖地区的部分通常包括以下几项&#xff1a; 数字量的格式 货币的格式 字符集 时间日期的格式 它设…

IOS开发:去除TabView的底部留白

我最近在做IOS开发的时候&#xff0c;使用SwiftUI中的TabView做左右滚动的页面切换&#xff0c;遇到了页面底部有大量留白无法去除的问题&#xff1a; 我查了很多资料都没有看到网上有人记录这个问题的解决方案&#xff0c;后来查阅apple developer的文档&#xff0c;我发现.ed…

iOS开发-字符串base64编码与解码

iOS开发-字符串base64编码与解码 在开发总经常遇到需要将字符串进行base64加密与解密。Base64是网络上最常见的用于传输8Bit字节码的编码方式之一&#xff0c;Base64就是一种基于64个可打印字符来表示二进制数据的方法。 这里使用的是GTMBase64 在Podfile中引入 pod GTMBas…

【计算机视觉|人脸建模】深度学习时代的3D人脸重建调查报告

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;3D Face Reconstruction in Deep Learning Era: A Survey 链接&#xff1a;3D Face Reconstruction in Deep Learning Era: A Survey - PubMed (nih.gov) 摘要 随着深度学习的出现和图形…

前端学习--vue2--2--vue指令基础

写在前面&#xff1a; 前置内容 - vue配置 文章目录 插值表达式v-html条件渲染v-show和v-ifv-ifv-if的扩展标签复用组件 v-show v-on /事件v-bind /&#xff1a;属性v-modelv-for 循环元素v-slotv-prev-cloak vue指令只的是带有v-前缀的特殊标签属性 插值表达式 插值表达式{…

Times New Roman对应的latex

在LaTeX中&#xff0c;可以使用以下命令将文字设置为Times New Roman字体&#xff1a; \usepackage{times} 然后&#xff0c;将文档正文部分包含在以下命令之间&#xff1a; \begin{document} … \end{document} 这样&#xff0c;文档正文中的文字将以Times New Roman字体呈…

AES加密的基本常识和封装类

AES加密的基本常识和封装类 AES(Advanced Encryption Standard)是一种对称密钥加密算法,被广泛用于保护敏感数据的安全性。它是一种块加密算法,意味着它将明文数据分成固定大小的块,并使用相同的密钥对每个块进行独立加密。AES算法支持不同的密钥长度,包括128位、192位和…

cglib动态代理、jdk动态代理及spring动态代理使用

1.项目初始化 1.1 pom.xml <dependencies><!-- spring依赖 --><dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>5.2.5.RELEASE</version></dependency>&l…

从源程序到可执行文件的四个过程

从源程序到可执行文件的四个过程 预处理编译汇编链接 程序要运行起来&#xff0c;必须要经过四个步骤&#xff1a;预处理、编译、汇编和链接&#xff0c;如下图所示&#xff1a; -E选项&#xff1a;提示编译器执行完预处理就停下来&#xff0c;后边的编译、汇编、链接就先不执…