stable diffusion打造自己专属的LORA模型

通过Lora小模型可以控制很多特定场景的内容生成。

但是那些模型是别人训练好的,你肯定很好奇,我也想训练一个自己的专属模型(也叫炼丹~_~)。

甚至可以训练一个专属家庭版的模型(family model),非常有意思。

将自己的训练好的Lora模型放到stableDiffusion lora 目录中,同时配上美丽的封面图。

lora

(plen_me、plen_vivi,这两个是我训练的和家里人的模型~_~)

这样就可以将你的Lora模型和其他Lora模型融合使用了。

再配上Controlnet基本可以,将自己的pose+特征融入到其他任何lora模型中。

【1】
下面我们看下如何训练自己的模型。

(我的炼丹炉配置,win10+i7F+4080 )

首先,Lora模型可以通过lora-scripts 脚本进行训练。

仓库地址:https://github.com/Akegarasu/lora-scripts

找个目录拉下来,先安装sd-scripts子项目,然后安装lora-scripts项目。

(敲黑板)重点看下sd-scripts 子项目:
https://github.com/kohya-ss/sd-scripts/tree/b5c60d7d62d6bb4a174ac09327dc517fc4446523

要严格按照作者给的步骤安装。(要不然会有很多奇怪的问题)

如果顺利的话大概安装需要30min左右。(需要kexue上网应该就不用多介绍了)

【2】
接下来准备需要训练的图片。

根据最后的生成效果,要找头像清晰的,脸部轮廓清楚的,背景最好是白色的。

然后就需要我们将图片进行预处理。

先将图片放在一个文件夹里,然后定一个预处理之后的文件夹名字。

然后在stablediffusion中找到【训练】【图像预处理】模块

lora

按照说明,填入预处理图片路径和目标目录,然后选择【Deepbooru生成标签】。然后点击【Preprocess】,等处理完成。

到目标目录下,看下生成的标签信息。

lora

lora

这些标签就是训练模型的图片特征了,基本上生成出来的标签还是要check下。

如果某个重要的标签丢失,或者识别错误(girl识别成boy ~_~)会直接影响炼丹质量。

【3】
将预处理目标文件夹复制到lora-scripts脚本的主目录的train目录中。(如果没有就创建一个)

如果你有多个训练集合可以在train中创建一个目录,然后放到这个目录中。

训练自己的专属模型,需要依赖一个主模型。真人特征的模型貌似用 chilloutmix_NiPrunedFp32Fix 比较流行(这个模型很强大,你懂的!)。

模型地址:
naonovn/chilloutmix_NiPrunedFp32Fix at main

将下好的模型文件复制到lora-scripts->sd-models文件夹中。

【4】

准备工作差不多了,我们编辑下训练脚本。

lora-scripts目录中的train.ps1 脚本文件。

# Train data path | 设置训练用模型、图片
$pretrained_model = "./sd-models/chilloutmix_NiPrunedFp32Fix.safetensors" # base model path | 底模路径
$train_data_dir = "./train/test" # train dataset path | 训练数据集路径

$pretrained_model:就是我们下载的训练模型的基础模型,把名字换掉。
$train_data_dir:训练数据目录。

    # Train related params | 训练相关参数$resolution = "512,512" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。$batch_size = 2 # batch size$max_train_epoches = 20 # max train epoches | 最大训练 epoch$save_every_n_epochs = 2 # save every n epochs | 每 N 个 epoch 保存一次

$resolution:如果你的图片预处理的时候没有调整过,这里就保持默认。
$batch_size、$max_train_epoches:如果你的卡不是很强,这里的参数可以小一点。(这两个参数主要控制训练的次数和显存加载的张量数据集)。

    # Output settings | 输出设置$output_name = "meoutput" # output model name | 模型保存名称

$output_name:用默认的也行,最好自定义一个名字,避免重复生成覆盖原来模型。

保存,然后右键 【使用PowerShell运行】。

(这里还是要祈祷下,不一定能一次成功。~_~)

脚本在运行过程中会出现一些'triton'加载失败的错误。

lora

lora

但是其实不影响模型的训练(我查了下好像是windows电脑就不支持这个模块)。

这里的错误如果不能正常执行,大概率是前面敲黑板的地方你没有仔细看。

等模型训练完。(我15张图,大概跑了10min左右。)

我们看下output目录输出的模型文件。

lora

这里的模型文件保存的个数,是train.ps1脚本文件里设置的。

最后我们要通过验证这些模型准确度,选用哪一个。

【5】

将这些模型文件全部复制到

E:\stable-diffusion-webui\extensions\sd-webui-additional-networks\models\lora

对应的扩展忙碌下。
如果还没有安装 sd-webui-additional-networks 扩展,记得先到扩展中安装。

也可以直接用git地址安装(有时候这个扩展查询有点问题)
https://github.com/kohya-ss/sd-webui-additional-networks.git

然后我们测试下这几个模型哪一个不错。

顺利安装插件之后,就可以在界面上看到 【Additional Networks】功能菜单。

lora

要测试自己的模型,基础模型还是要选用我们训练的 chilloutmix_NiPrunedFp32Fix 模型。

prompt可以用自己提取的标签作为测试。

批次可以适当多点,到时候可以选择。

lora

lora

这个过程大概需要个20min左右。(可以喝点茶等待创作了~_~)。

来一起见证AI的创作吧 ~~!

lora

图片的上方是每一个模型名称,左边是特征权重,组成的一个二维表格。

lora

有点那个意思 hhh。

下面这些就有点辣眼睛了 。

lora

lora

根据自己的眼光,我们挑选一个相对比较不错的模型。

整体觉得这个模型不错,我们记下模型的名字。

lora

将这个模型复制到 E:\stable-diffusion-webui\models\Lora 目录中。

lora

可以给你的模型配上一个封面,只要文件名和模型名一样就可以了。

【6】

有了自己的专属模型,就可以结合其他lora模型一起使用了。
我们试下水墨风格。

下载lora模型:Moxin_10
下载基础模型:dalcefoPainting_3rd.safetensors

(有些基础模型在C站没有,可以到huggingface上找找,再不行github上肯定有)

lora

点开这个红色的收缩面板。

lora

刷新一下,让lora模型文件重新加载下。

然后选择我们保存的lora文件,此时这个模型的prompt设置会在文本框里。

lora

然后再选择水墨风模型 Moxin。

调整下每一个模型的权重,此时可以将我们自己的模型特征调大些。

如果没啥问题,我们就去C站找这个lora比较好的prompt拿过来用。

lora

lora

lora


这张虽然有点辣眼睛,但是特征是有了。

lora


这一张比较像我女儿 ~_~。

最后,stablediffusion+lora等AIGC属于开挂技术,我们还是要遵纪守法做一个好同志!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15073.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RT1052 的周期定时器

文章目录 1 PIT 周期中断定时器2 PIT定时器的使用3 PIT定时器配置3.1 PIT 时钟使能。3.1.1 CLOCK_EnableClock 3.2 初始化 PIT 定时器3.2.1 PIT_Init 3.3 设置 通道 0 的 加载值3.3.1 PIT_SetTimerPeriod 3.4 使能 通道 0 的中断3.4.1 PIT_EnableInterrupts 3.5 开启 PIT 定时器…

PysparkNote006---pycharm加载spark环境

pycharm配置pyspark环境,本地执行pyspark代码 spark安装、添加环境变量不提了 File-Settings-Project-Project Structure-add content root添加如下两个路径 D:\code\spark\python\lib\py4j-0.10.7-src.zipD:\code\spark\python\lib\pyspark.zip 2023-07-26 阴 于…

Redis缓存预热

说明:项目中使用到Redis,正常情况,我们会在用户首次查询数据的同时把该数据按照一定命名规则,存储到Redis中,称为冷启动(如下图),这种方式在一些情况下可能会给数据库带来较大的压力…

AcWing 算法基础课二 数据结构 链表 栈 队列 并查集 哈希表

单链表. AcWing. 826.单链表 import java.util.Scanner; public class Main{static int[] e new int[100010];//结点i的值static int[] ne new int[100010];//结点i的next指针static int idx,head;//head是头结点,idx存当前已经用到了哪个点public static void i…

【简化程序设计】C++STL“容器适配器“之栈和队列

【STL】容器适配器之栈和队列 stack的介绍和使用stack的介绍stack的使用stack的模拟实现 queue的介绍和使用queue的介绍queue的使用queue的模拟实现 priority_queue的介绍和使用priority_queue的介绍priority_queue的使用priority_queue的模拟实现 容器适配器什么是容器适配器&…

基于x-scan扫描线的3D模型渲染算法

基于x-scan算法实现的z-buffer染色。c#语言&#xff0c;.net core framework 3.1运行。 模型是读取3D Max的obj模型。 x-scan算法实现&#xff1a; public List<Vertex3> xscan() {List<Vertex3> results new List<Vertex3>();SurfaceFormula formula g…

从使用回溯分割字符串的技巧到前向搜索

题目 131. 分割回文串 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是 回文串 。返回 s 所有可能的分割方案。 回文串 是正着读和反着读都一样的字符串。 答案&#xff1a; class Solution {boolean[][] f;List<List<String>>…

【多线程中的线程安全问题】线程互斥

1 &#x1f351;线程间的互斥相关背景概念&#x1f351; 先来看看一些基本概念&#xff1a; 1️⃣临界资源&#xff1a;多线程执行流共享的资源就叫做临界资源。2️⃣临界区&#xff1a;每个线程内部&#xff0c;访问临界资源的代码&#xff0c;就叫做临界区。3️⃣互斥&…

【密码学】三、AES

AES 1、AES产生2、数学基础2.1有限域GF(2^8^)2.1.1加法运算2.1.2乘法运算2.1.3x乘运算2.1.4系数在GF(2^8^)上的多项式 3、AES算法描述3.1字节代换3.2行移位3.3列混合3.4轮密钥加3.5密钥扩展 1、AES产生 征集AES算法的活动&#xff0c;目的是确定一个非保密的、公开的、全球免费…

HCIP——重发布及路由策略实验

重发布及路由策略实验 一、实验拓扑二、实验要求三、实验思路三、实验步骤1、配置接口IP地址以及环回地址2、配置动态路由协议3、重发布4、更改接口类型5、配置路由策略 一、实验拓扑 二、实验要求 1、使用双点双向重发布2、所有路由器进行最佳选路3、存在备份路径&#xff0c…

软考05根据内存区域大小计算芯片数量

文章目录 前言一、原题二、解题思路1.计算内存区域的大小2.计算每个存储器芯片的容量3.计算芯片数量 总结 前言 从网上看题答案是有了&#xff0c;但是不知道具体的计算过程就很难受&#xff0c;不然下次还是不会&#xff0c;只能自己梳理了 一、原题 二、解题思路 1.计算内存…

Android开发之Fragment动态添加与管理

文章目录 主界面布局资源两个工具Fragment主程序 主界面布局资源 在activity_main.xml中&#xff0c;声明两个按钮备用&#xff0c;再加入一个帧布局&#xff0c;待会儿用来展示Fragment。 <?xml version"1.0" encoding"utf-8"?> <LinearLayo…

手机的python怎么运行文件,python在手机上怎么运行

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;手机上的python怎么运行程序&#xff0c;手机的python怎么运行文件&#xff0c;今天让我们一起来看看吧&#xff01; 1、python程序怎么在手机上运行 python语言应用很广泛&#xff0c;自己也很喜欢使用它&#xff0c;其…

iOS - 检测项目中无用类和无用图片

一、无引用图片检测 LSUnusedResources 安装插件 LSUnusedResources &#xff0c;用【My Mac】模拟器运行,如下图&#xff1a; Project Path 就是项目所在的路径&#xff0c;然后点击右下角 Search按钮&#xff0c;就可以看到被搜索出来的图片资源。 注意&#xff1a;这里被搜…

Linux——进程控制

目录 1. 进程创建 1.1 fork函数 1.2 fork系统调用内部宏观流程 1.3 fork后子进程执行位置分析 1.4 fork后共享代码分析 1.5 fork返回值 1.6 写时拷贝 1.7 fork常规用法 1.8 fork调用失败的原因 2.进程终止 2.1 进程退出场景 2.2 strerror函数—返回描述错误号的字符…

解决问题:python PermissionError: [WinError 5]拒绝访问

重要&#xff1a;关闭PyCharm Community Edition 2022.3等与python相关的编程程序找到按照python解释器的位置python->右键>属性>安全->点击组或用户名"中的Users->编辑点击"组或用户名"中的Users->把"完全控制"打钩->应用->…

Servlet文件的下载

第一种方法直接在前端使用超链接&#xff0c;也就是a标签 浏览器不能识别会直接下载&#xff08;像压缩文件不能直接下载&#xff09;&#xff0c;浏览器能识别&#xff0c;想要下载加一个download属性。download可以不写任何信息。 首先在web下建一个文件&#xff0c;放需要…

在Windows 10和11中恢复已删除的照片

可以在Windows 10或11上恢复已删除的照片吗&#xff1f; 随着技术的发展&#xff0c;越来越多的用户习惯在电子设备上存储照片。如果这些照片被删除&#xff0c;可能会给用户带来重大损失。当照片丢失时&#xff0c;您可能会想是否可以恢复已删除的照片&#xff1f; …

Kafka原理剖析

一、简介 Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统&#xff0c;它提供了类似于JMS的特性&#xff0c;但在设计上完全不同&#xff0c;它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性&#xff0c;适用于离线和在线的消息消费&#xff0c;如常规的…

内网隧道代理技术(十五)之 Earthworm的使用(二级代理)

Earthworm的使用(二级代理) 本文紧接着上一篇文章继续讲解Earthworm工具的使用 (二级代理)正向连接 二级正向代理发生在如下的情况: 1、Web服务器在公网,黑客可以直接访问 2、B机器在内网,黑客不能直接访问 3、Web服务器可以访问内网机器B 4、内网机器B可以访问公司…