413. 等差数列划分
413. 等差数列划分
题目描述:
如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。
- 例如,
[1,3,5,7,9]
、[7,7,7,7]
和[3,-1,-5,-9]
都是等差数列。
给你一个整数数组 nums
,返回数组 nums
中所有为等差数组的 子数组 个数。
子数组 是数组中的一个连续序列。
解题思路:
1. 状态表⽰:
由于我们的研究对象是「⼀段连续的区间」,如果我们状态表⽰定义成 [0, i] 区间内⼀共有多
少等差数列,那么我们在分析 dp[i] 的状态转移时,会⽆从下⼿,因为我们不清楚前⾯那么多
的「等差数列都在什么位置」。所以说,我们定义的状态表⽰必须让等差数列「有迹可循」,让状
态转移的时候能找到「⼤部队」。因此,我们可以「固定死等差数列的结尾」,定义下⾯的状态表
⽰:
dp[i] 表⽰必须「以 i 位置的元素为结尾」的等差数列有多少种。
2. 状态转移⽅程:
我们需要了解⼀下等差数列的性质:如果 a b c 三个数成等差数列,这时候来了⼀个 d ,其
中 b c d 也能构成⼀个等差数列,那么 a b c d 四个数能够成等差序列吗?答案是:显然
的。因为他们之间相邻两个元素之间的差值都是⼀样的。有了这个理解,我们就可以转⽽分析我们
的状态转移⽅程了。
对于 dp[i] 位置的元素 nums[i] ,会与前⾯的两个元素有下⾯两种情况:
i. nums[i - 2], nums[i - 1], nums[i] 三个元素不能构成等差数列:那么以
nums[i] 为结尾的等差数列就不存在,此时 dp[i] = 0 ;
ii. nums[i - 2], nums[i - 1], nums[i] 三个元素可以构成等差数列:那么以
nums[i - 1] 为结尾的所有等差数列后⾯填上⼀个 nums[i] 也是⼀个等差数列,此时
dp[i] = dp[i - 1] 。但是,因为 nums[i - 2], nums[i - 1], nums[i] 三
者⼜能构成⼀个新的等差数列,因此要在之前的基础上再添上⼀个等差数列,于是
dp[i] = dp[i - 1] + 1 。
综上所述:状态转移⽅程为:
当: nums[i - 2] + nums[i] != 2 * nums[i - 1] 时, dp[i] = 0
当: nums[i - 2] + nums[i] == 2 * nums[i - 1] 时, dp[i] = 1 + dp[i -
1]
3. 初始化:
由于需要⽤到前两个位置的元素,但是前两个位置的元素⼜⽆法构成等差数列,因此 dp[0] =
dp[1] = 0 。
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
因为我们要的是所有的等差数列的个数,因此需要返回整个 dp 表⾥⾯的元素之和。
解题代码:
class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n=nums.size();vector<int>dp(n,0);int ret=0;for(int i=2;i<n;i++){if((nums[i-1]-nums[i-2])==(nums[i]-nums[i-1]))dp[i]=dp[i-1]+1;else dp[i]=0;ret=ret+dp[i];}return ret;}
};
978. 最长湍流子数组
978. 最长湍流子数组
题目描述:
给定一个整数数组 arr
,返回 arr
的 最大湍流子数组的长度 。
如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。
更正式地来说,当 arr
的子数组 A[i], A[i+1], ..., A[j]
满足仅满足下列条件时,我们称其为湍流子数组:
- 若
i <= k < j
:- 当
k
为奇数时,A[k] > A[k+1]
,且 - 当
k
为偶数时,A[k] < A[k+1]
;
- 当
- 或 若
i <= k < j
:- 当
k
为偶数时,A[k] > A[k+1]
,且 - 当
k
为奇数时,A[k] < A[k+1]
。
- 当
解题代码:
class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {int n = arr.size();vector<int> f(n, 1), g(n, 1);int ret = 1;for(int i = 1; i < n; i++){if(arr[i - 1] < arr[i]) f[i] = g[i - 1] + 1;else if(arr[i - 1] > arr[i]) g[i] = f[i - 1] + 1;ret = max(ret, max(f[i], g[i]));}return ret;}
};