暖阳脚本_ 将Agent技术的灵活性引入RPA,清华等发布自动化智能体ProAgent

RPA暖阳脚本

近日,来自清华大学的研究人员联合面壁智能、中国人民大学、MIT、CMU 等机构共同发布了新一代流程自动化范式 “智能体流程自动化” Agentic Process Automation(APA),结合大模型智能体帮助人类进行工作流构建,并让智能体自主处理工作流中涉及复杂决策与动态处理的环节,进一步提升自动化的程度,提高效率,将人类从繁重的劳动中解放出来。
在这里插入图片描述

在历史的长河中,自动化是人类技术发展的主要动力,帮助人类从复杂、危险、繁琐的劳动环境中解放出来。自早期农业时代的水车灌溉,到工业时代的蒸汽机,人类一直在不断寻求更加先进的自动化技术,从而解放自身于繁重的工作。

随着信息时代的到来,软件作为信息处理、存储和通信的基础成为了人类生产生活密不可分的一环,从而催成了机器人流程自动化(Robotic Process Automation, RPA)技术。其通过人工编制规则将多个软件协调成一个固化的工作流(Workflow),通过模拟人交互的方式来和软件交互实现高效执行。

图 1 机器人流程自动化 RPA 与智能体流程自动化 APA 对比

RPA 利用软件机器人或称为 “BOT” 来模拟和执行重复性、规则性的任务,从而解放人力资源,提高工作效率。RPA 的应用范围非常广泛。很多企业(包括银行、保险公司、制造业、零售业等各个行业)常利用 RPA 机器人来自动执行一些常规和繁琐的任务,例如:数据录入、数据提取、数据处理。通过自动化任务,RPA 可以大幅度减少错误率,并且能够在 24*7 不间断地执行任务,从而提高了业务的可靠性和响应能力。

根据市场研究,RPA 市场正在迅速增长并取得巨大成功。Gartner 预测,2023 年全球 RPA 市场收入将达到 33 亿美元,相比 2022 年增长 17.5%。这表明了企业对于 RPA 的强烈需求和认可。

但是,RPA 仅能替代简单、机械的人力工作,一些复杂的流程仍旧依赖人工:

编写 RPA 工作流本身需要繁重的人类劳动,成本较高。

复杂任务非常灵活,通常涉及动态决策,难以固化为规则进行表示。

图 2 RPA 与 APA 的效率与智能对比

幸运的是,最近 AI 领域兴起的大模型智能体技术(Large Language Model based Agents, LLM-based Agents)也许给自动化技术创造了新的可能性。有没有可能将 Agent 技术的灵活性引入到 RPA 领域中,来进一步减少人的参与呢?

该团队的研究探讨了大模型智能体时代下新型自动化范式 “智能体流程自动化” Agentic Process Automation (APA)。和传统 RPA 相比,在 APA 范式中,Agent 可以根据人类的需求自主完成工作流构建,同时其可以识别人类需求中需要动态决策的部分,将自动编排进工作流中,并在工作流执行到该部分时主动接管工作流的执行完成相应复杂决策。

为了探索 APA 的可能性,该研究工作实现了一个自动化智能体 ProAgent,其可以接收人类指令,以生成代码的方式构建工作流,同在工作流中引入 DataAgent 和 ControlAgent 来在工作流中实现复杂数据处理与逻辑控制。ProAgent 的研究展现了 APA 在大模型智能体时代下的可行性,也揭示了 LLM 时代下,自动化技术的崭新可能性。

方法介绍

在 RPA 中,工作流是由一系列工具调用组成的图状结构:节点代表一个原子化的工具调用(如 Gmail、Twitter、Google Sheets),而边代表了执行的逻辑顺序(承接、分支、循环)。一个工作流往往包含了对于一个或一类任务的所有先验知识,其中包含解决问题的路径,遇到异常时的处理逻辑等等。因此人编写固化出来的工作流往往是非常稳定周全、非常高效的。

图 3 智能体工作流描述语言示例

在 ProAgent 中,由于 LLM 本身在代码数据中进行预训练,学习到了较强代码能力,该研究便基于代码的智能体工作流描述语言 Agentic Workflow Description Language。该语言使用 JSON 实现对工作流中数据的组织与管理,选择 Python 语法实现对工作流的逻辑控制,将控制流中的跳转、循环等直接通过 Python 语法进行表征,同时将工作流中的工具调用封装为 Python Function。于是对于 ProAgent,工作流构建任务便转化为代码生成任务。当接收到人类指令时,ProAgent 便编写相应的 Agentic Workflow Description Language,从而实现了工作流自动化构建。

图 4 结合 DataAgent 和 ControlAgent 的智能体工作流描述语言示例

复杂的现实任务中通常会涉及动态决策,单纯的 Python 式的逻辑控制规则以及 JSON 式的数据组织形式在面对灵活的需求时便无能为力,此时便需要引入 agent。因此,该研究工作进一步定义出了两种 Agent 操作:

  1. DataAgent:对于一个复杂的数据处理需求,工作流构建时会使用自然语言来描述处理的任务,然后在执行时会初始化一个 DataAgent,其会基于该自然语言描述自主处理并完成该数据处理任务。

  2. ControlAgent:对于难以用规则表示的逻辑控制规则,工作流构建时使用自然语言对控制逻辑进行描述,然后在运行时会初始化一个 ControlAgent,其会基于该自然语言描述自主选择工作流后续需要执行的分支。

ProAgent 使用 ReACT 模式逐步构建工作流,其共包含四个工作流构建步骤:

Action_Define:决定在工作流中添加什么工具。

Action Implement:将工具的输入 / 输出参数转化为 JSON 结构,同时将工具的调用封装为 Python 函数。

Workflow Implement:定义一个 mainWorkflow 函数,用以组织整个 workflow 的逻辑控制与数据处理。

Task Submit: 当 ProAgent 构建完 workflow 时以该操作标识构建过程结束。

图 5 ProAgent 工作流构建过程示例

另外,为了优化 ProAgent 的效果,又引入了几个优化技巧:

1.Testing-on-Constructing:在构建过程中,ProAgent 会在一次修改工作流之后对工作流进行测试,以保证工作流的正确性。

Function Calling:工作流构建的所有操作均封装为了 GPT-4 的 Function,从而提高对工作流构建过程的控制。

Chain-of-Thought:ProAgent 在编写工作流代码时,需要对于每个 function 都要给出注释 comment 和一个编写 plan,从而提高 ProAgent 工作流构建的性能。

工作流执行过程基于 Python interpreter。给定一个工作流,其对应的 mainWorkflow 函数用作为工作流执行的入口来开始整个执行过程。执行过程遵循 Python 代码执行规则,即按照顺序逐行执行。一旦 mainWorkflow 函数返回,工作流执行就成功完成了。

可行性验证

为了验证 Agentic Process Automation 的可行性,该研究使用 OpenAI GPT-4 作为基础模型,并以一个开源的 RPA 平台 n8n 作为载体,实现了上述的 ProAgent。同时设计了一个需要兼顾灵活与效率的任务:这是一个典型的商业场景,需要从 Google Sheets 中提取各种业务线的营利数据,同时根据业务是否属于 2B 或是 2C,决定后续的行为。一旦确定业务线为 2C,就会向 Slack 频道发送一条消息。而对于 2B 的业务线,则会向相应的经理发送一封电子邮件,其中包括对业务线的评估和简要的盈利概况。

图 6 任务 Instruction 展示

对于该任务,首先它是一个重复性的任务,对于多条产品线,应该走相同的处理流程。其次,分辨一个业务线是 2C 还是 2B 很难通过规则判断,需要涉及 Agent 动态决策来判断后续的工作流执行操作。最后,根据撰写业务线的评估邮件需要一定的智能,所以需要 Agent 的介入。

在 ProAgent 生成中,对于该任务,编写出了一个包含四个原子操作,一个 DataAgent 和一个 ControlAgent 的工作流。总体过程大致如下图所示:

图 7 ProAgent 工作流构建过程展示

可以看到,ProAgent 通过自主编写代码的方式,自动完成了工作流的构建过程,其中无需涉及人工介入。在需要判断业务线是 2B 还是 2C 时,ProAgent 引入了 ControlAgent 来做判断,ControlAgent 的 Prompt 被设置为 “Decide Whether the business line is toC or toB”。当业务线为 2B 时,ProAgent 还引入了一个 DataAgent,其任务设置为 “Write a email of the business line of profit, together with your suggestion”,从而利用 agent 的智能来根据不同业务线的实际情况来撰写邮件。

在工作流被编写、固化下来以后,工作流就会根据不同的数据自动分支到不同的逻辑进行高效地数据处理了。

图 8 ProAgent 工作流执行过程展示

在处理 2C 业务线数据时,ControlAgent 可以根据业务线描述判断出当前业务线的类型,选择调用 Slack 工具。当遇到 2B 业务线数据时,DataAgent 可以撰写邮件发到相应经理的邮箱中。

总结

该研究提出了大模型时代下新的自动化范式 ——Agentic Process Automation,和传统 Robotic Process Automation 技术相比,其可以实现工作流构建的自动化,以及工作流执行时动态决策的自动化。该研究进一步实现了 ProAgent 并通过实验揭示了大模型智能体在自动化中的可行性与潜力。相信未来大模型智能体技术会帮助人类实现更高层次的自动化,将人类从各种繁重的劳动中解放出来。在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/150149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT下使用QChart绘制曲线

目录 头文件内容构造函数AddSeries方法UpdateSeries方法AppendSeriesData方法SetLegendVisiableSetRubberBandCPP内容测试函数 需要用到的头文件&#xff1a; #include <QtCharts/QChart> #include <QtCharts/QChartView> #include <QtCharts/QValueAxis> #…

广西南宁新能源汽车电机定子三维扫描3D尺寸测量检测-CASAIM中科广电

一、背景介绍 电机定子压圈是一种用于电机上对电机定子的两端进行固定的辅助装置&#xff0c;在电机制造业中&#xff0c;电机定子制造的工艺水平往往能够直接决定电机制造的性能质量。而传统电机定子检测主要通过三坐标测量以及人工卡尺测量两种测量方式&#xff0c;三坐标每…

在Vue3中使用Element-Plus分页(Pagination )组件

开发过程中数据展示会经常使用到&#xff0c;同时分页功能也会添加到页面中。 记&#xff1a;在Vue3中使用Element-Plus分页组件与表格数据实现分页交互。 开始实现 引入表格和分页组件的H5标签。 <strong>Element-Plus分页组件使用</strong> <div><el-t…

【LeetCode刷题】--9.回文数

9.回文数 class Solution {public boolean isPalindrome(int x) {if(x < 0){return false;}int tmp x, sum 0;boolean flag false;while(x ! 0){sum sum * 10 x % 10;x / 10;}if(sum tmp){flag true;}return flag;} }

nvm的下载与使用

1.如果已经安装nodejs , 先卸载nodejs; 从控制面板中 卸载程序 卸载nodejs win r打开cmd ,管理员运行 where node 查看是否删除干净nodejs 2.下载nvm 从github 下载nvm , 下载nvm 3.nvm 和node安装路径最好写在同一个路径下 &#xff0c;如D盘 ,D\a\nvm , D\a\nodejs 4.…

算法之路(二)

&#x1f58a;作者 : D. Star. &#x1f4d8;专栏 : 算法小能手 &#x1f606;今日分享 : 你知道北极熊的皮肤是什么颜色的吗&#xff1f;&#xff08;文章结尾有答案哦&#xff01;&#xff09; 文章目录 力扣的209题✔解题思路✔代码:✔总结: 力扣的3题✔解题思路&#xff1a…

单链表相关面试题--3.给定一个带有头结点 head 的非空单链表,返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点

/* 解题思路&#xff1a; 通过快慢指针找到中间节点&#xff0c;快指针每次走两步&#xff0c;慢指针每次走一步&#xff0c;当快指针走到结尾的时候&#xff0c;慢指针正好走到中间位置 */ typedef struct ListNode Node; struct ListNode* middleNode(struct ListNode* head)…

Vue3-provide 和 inject 跨组件传递数据

Vue3-provide 和 inject 跨组件传递数据 功能&#xff1a;将数据从App组件跨过一个组件传递到B组件中provide&#xff1a;提供数据inject&#xff1a;接收数据 // App.vue <template><h2>我是App组件&#xff08;{{num}}&#xff09;</h2><A></A&g…

服务器IPMI管理操作

简介&#xff1a;智能平台管理界面&#xff08;IPMI&#xff0c;Intelligent Platform Management Interface)是管理基于 Intel 结构的企业系统中所使用的外围设备采用的一种工业标准&#xff0c;用户可以利用IPMI监视服务器的物理健康特征&#xff0c;如温度、电压、风扇工作状…

马斯克回应OpenAI混乱:如果这关乎AI安全,那将影响整个地球

马斯克回应OpenAI混乱&#xff1a;如果这关乎AI安全&#xff0c;那将影响整个地球 2023-11-20 16:14秦丝进销存 近日&#xff0c;“马斯克回应ChatGPT之父被开除”登上热搜&#xff0c;特斯拉首席执行官马斯克曾与ChatGPT之父奥特曼一起创建OpenAI&#xff1b; 他在一篇”网友…

海康威视综合安防管理平台任意文件上传

系统介绍 HIKVISION iSecure Center综合安防管理平台是一套“集成化”、“智能化”的平台&#xff0c;通过接入视频监控、一卡通、停车场、报警检测等系统的设备&#xff0c;获取边缘节点数据&#xff0c;实现安防信息化集成与联动&#xff0c;公众号&#xff1a;web安全工具库…

《QT从基础到进阶·三十》QVariant的基础用法

很多时候&#xff0c;需要几种不同的数据类型需要传递&#xff0c;如果用结构体&#xff0c;又不大方便&#xff0c;容器保存的也只是一种数据类型&#xff0c;而QVariant则可以统统搞定。 QVariant可以保存QT和C常用类型&#xff0c;如果是自定义类型&#xff0c;比如struct,c…

【Django使用】django经验md文档10大模块。第4期:Django数据库增删改查

Django的主要目的是简便、快速的开发数据库驱动的网站。它强调代码复用&#xff0c;多个组件可以很方便的以"插件"形式服务于整个框架&#xff0c;Django有许多功能强大的第三方插件&#xff0c;你甚至可以很方便的开发出自己的工具包。这使得Django具有很强的可扩展…

【计算机网络笔记】网络地址转换(NAT)

系列文章目录 系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08…

mongodb——概念介绍(文档,集合,固定集合,元数据,常用数据类型)

mongodb 层级结构 实例&#xff1a;系统上运行的进程及节点集&#xff0c;一个实例可以有多个库&#xff0c;默认端口 27017。 库&#xff1a;多个集合组成数据库&#xff0c;每个数据库都是独立的&#xff0c;有自己的用户、权限信息&#xff0c;独立的存储文件集 合。 集合&…

QT 使用mysql

版本&#xff1a;ubuntu&#xff1a;20.04.1 mysql&#xff1a; 8.0.35 QT &#xff1a;5.12.8 1.安装mysql sudo apt install mysql-server 下载完后查看mysql状态 sudo service mysql status 如下图active&#xff08;running&#xff09;则下载成功&#xff0c;运行中…

ExcelBDD PHP Guideline

在PHP里面支持利用Excel的BDD&#xff0c;也支持利用Excel进行参数化测试 ExcelBDD Use Excel file as BDD feature file, get example data from Excel files, support automation tests. Features The main features provided by this library are: Read test data acco…

思伟老友记 | 厦门路桥翔通海砼建材有限公司与思伟软件携手走过23年

23年 感恩相伴 携手成长 2001年-2023年&#xff0c;厦门路桥翔通海砼建材有限公司已携手上海思伟软件有限公司走过23年。从最初的半手动生产模式到如今的自动生产一体化系统&#xff0c;海砼公司通过思伟软件生产混凝土累计超过1000万m&#xff0c;思伟软件则借助海砼公司的实…

二百零六、Flume——Flume1.9.0单机版部署脚本(附截图)

一、目的 在实际项目部署时&#xff0c;要实现易部署易维护&#xff0c;需要把安装步骤变成安装脚本实现快速部署 二、部署脚本在Linux中文件位置 文件夹中只有脚本文件flume-install.sh和tar包apache-flume-1.9.0-bin.tar.gz 三、Flume安装脚本 #!/bin/bash #获取服务器名…

竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题

文章目录 1 前言2 用户画像分析概述2.1 用户画像构建的相关技术2.2 标签体系2.3 标签优先级 3 实站 - 百货商场用户画像描述与价值分析3.1 数据格式3.2 数据预处理3.3 会员年龄构成3.4 订单占比 消费画像3.5 季度偏好画像3.6 会员用户画像与特征3.6.1 构建会员用户业务特征标签…