Python基础
- 语法拾遗
- List与Tuple的区别
- yield关键字
- for in enumerate
- for in zip
- 精彩片段
- 测量程序用时
语法拾遗
List与Tuple的区别
List | Tuple | |
---|---|---|
建立后是否可变 | 可变 | 不可变 |
建立后是否可添加元素 | 可添加 | 不可添加 |
# list and tuple
List = [1, 2, 3, 4, 5]
Tuple = (1, 2, 3, 4, 5)
print(List)
print(Tuple)def change_element():"""# diff1list中元素,建立后可改变tuple中元素,建立后不可改变"""print("【1.change element】")List[0] = 0# Tuple[0] = 0 # errorprint(List)print(Tuple)def add_element():"""# diff2list可添加元素tuple不可添加元素"""print("【2.add element】")List.append(6)print(List)print(Tuple)def resize():l2 = List + Listt2 = Tuple + Tupleprint(l2)print(t2)def nest():List[0] = [6, 8, 10]# Tuple[0] = (6,8,10) # errorprint(List)tuple = (1, 2, 3, 4, (5, 6, 7, 8))print(tuple)def in_and_notin():print("1 in", List, "is", 1 in List)print("1 in", Tuple, "is", 1 in Tuple)print("100 not in", List, "is", 100 not in List)print("100 not in", Tuple, "is", 100 not in Tuple)passdef is_and_equal():"""is, is not 比较的是两个变量的内存地址== 比较的是两个变量的值:return:"""x = "hello"y = "hello"print(x is y, x == y) # True,Trueprint(x is not y, x != y) # False,Falsea = ["hello"]b = ["hello"]print(a is b, a == b) # False Trueprint(a is not b, a != b) # True Falsec = ("hello")d = ("hello")print(c is d, c == d) # True,Trueprint(c is not d, c != d) # False,Falsedef complement_code(x):"""求一个数的补码https://tianchi.aliyun.com/notebook/169961方法来源,阿里天池:param x::return:"""if x >= 0:return bin(x)else:return bin(x & 0xffffffff)if __name__ == "__main__":# change_element()# add_element()# resize()# nest()# in_and_notin()# is_and_equal()# print(complement_code(-3))
yield关键字
《Python中yield的使用》—— 设计学院:这篇文章说使代码逻辑更加清晰,易于理解和维护,可yield的缺点就是不好阅读和理解,不是西方人写的所有东西都是好的。
Python Yield - NBShare
def my_generator():yield 1yield 2yield 3g = my_generator()
print(next(g)) # 输出:1
print(next(g)) # 输出:2
print(next(g)) # 输出:3###############################
def my_generator():yield 1yield 2yield 3if __name__ == '__main__':for i in my_generator():print(i)
# 输出:
# 1
# 2
# 3
###############################
#惰性计算指的是在需要的时候才计算数据,而不是一次性计算所有的数据。通过yield,我们可以将计算分成多个阶段,每次只计算一部分数据,从而减少了计算的时间和内存消耗。
def fib():a, b = 0, 1while True:yield aa, b = b, a + bf = fib()
print(next(f)) # 输出:0
print(next(f)) # 输出:1
print(next(f)) # 输出:1
print(next(f)) # 输出:2
###############################
#协程是一种在单线程中实现多任务的技术,可以实现任务之间的切换和并发执行。
#yield可以用来实现协程,通过yield可以在函数执行过程中暂停,并切换到其他任务。这种方式可以大幅度提高程序的并发性和响应性。
#通过yield语句实现了程序的暂停和切换。使用send()方法可以向协程中传递数据,并在需要的时候继续执行程序。
def coroutine():while True:value = yieldprint(value)c = coroutine()
next(c)
c.send("Hello") # 输出:Hello
c.send("World") # 输出:World
我是这么理解的,yield相当于把断点调试写成了一个语法特性,每调用一次这个关键字生成的generator就生成下一个结果。我发现,国内网站UI颜值普遍低,还是说国内的技术栈,像我海军某少校参观俄罗斯舰艇所感一样,“感受到了厚重的历史”。
for in enumerate
《用法介绍for in enumerate》—— 设计学院
######## 1.基本用法
animals = ['cat', 'dog', 'fish']
for idx, animal in enumerate(animals):print('Index:', idx, 'Animal:', animal)# Index: 0 Animal: cat
# Index: 1 Animal: dog
# Index: 2 Animal: fish######## 2.指定遍历的起始索引值
fruits = ['apple', 'banana', 'melon']
for idx, fruit in enumerate(fruits, start=1):print('Index:', idx, 'Fruit:', fruit)# Index: 1 Fruit: apple
# Index: 2 Fruit: banana
# Index: 3 Fruit: melon######## 3.使用for in enumerate遍历字典时,会输出字典中每个键值对的索引值和key,而非value。
fruits = {'apple': 1, 'banana': 2, 'melon': 3}
for idx, fruit in enumerate(fruits):print('Index:', idx, 'Fruit:', fruit)# Index: 0 Fruit: apple
# Index: 1 Fruit: banana
# Index: 2 Fruit: melon######## 4.遍历嵌套列表
neste_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for i, lst in enumerate(neste_list):for j, element in enumerate(lst):print('i:', i, 'j:', j, 'element:', element)# i: 0 j: 0 element: 1
# i: 0 j: 1 element: 2
# i: 0 j: 2 element: 3
# i: 1 j: 0 element: 4
# i: 1 j: 1 element: 5
# i: 1 j: 2 element: 6
# i: 2 j: 0 element: 7
# i: 2 j: 1 element: 8
# i: 2 j: 2 element: 9######## 5.K-折交叉验证遍历
fold = KFold(5,shuffle=False)
y_train_data = pd.DataFrame([11,12,13,14,15, 16,17,18,19,20])
print(type(fold.split(y_train_data))) # generator, the yield feature are used in this function,用到了yield关键字.
print(fold.split(y_train_data))
# for iteration, indices in enumerate(fold.split(y_train_data), start = 0): # Try it
for iteration, indices in enumerate(fold.split(y_train_data), start = 1): # fold.split(): Generate 'indices' to split data into training and test set.print('iteration = ',iteration)print(indices[0])print(indices[1])# <class 'generator'>
# <generator object _BaseKFold.split at 0x7f31ba7479e8>
# iteration = 1
# [2 3 4 5 6 7 8 9]
# [0 1]
# iteration = 2
# [0 1 4 5 6 7 8 9]
# [2 3]
# iteration = 3
# [0 1 2 3 6 7 8 9]
# [4 5]
# iteration = 4
# [0 1 2 3 4 5 8 9]
# [6 7]
# iteration = 5
# [0 1 2 3 4 5 6 7]
# [8 9]
for in zip
《用法介绍for in zip》—— 设计学院
######## 1.基本用法
iter1 = [1, 2, 3]
iter2 = ['a', 'b', 'c']result = zip(iter1, iter2)
print(type(result))
for x, y in result:print(x, y)
# 输出结果:
# <class 'zip'>
# 1 a
# 2 b
# 3 c######## 2.合并列表并输出
list1 = [1, 2, 3]
list2 = ['a', 'b', 'c']result = list(zip(list1, list2))
print(result) # 输出结果:[(1, 'a'), (2, 'b'), (3, 'c')]######## 3.并行处理
import multiprocessingdef process_data(data):# 处理数据的函数print(type(data))print(data,end='')return 'THE RESULT'input_data1 = [1, 2, 3, 4, 5]
input_data2 = ['a', 'b', 'c', 'd', 'e']
pool = multiprocessing.Pool()# 这里的map(func, param),就是将param(可迭代即可)中的每个值,传入func进行并行计算,然后map函数本身的返回值,就是分别计算的结果,以list为形式返回。
ret_list = pool.map(process_data, zip(input_data1, input_data2)) # Apply `func` to each element in `iterable`, collecting the results in a list that is returned.
print(ret_list)# 由于是并行的,可能连续输出,换行不一定是规整的,这似乎证明了一件事,那就是print输出并非原子操作,中间是可以被插入其它运算的
#<class 'tuple'><class 'tuple'><class 'tuple'><class 'tuple'><class 'tuple'>
#(4, 'd')(1, 'a')
#(5, 'e')(3, 'c')(2, 'b')['THE RESULT', 'THE RESULT', 'THE RESULT', 'THE RESULT', 'THE RESULT']######## 4.将两个列表转换成字典
keys = ['a', 'b', 'c']
values = [1, 2, 3]result = dict(zip(keys, values))
print(result) # 输出结果:{'a': 1, 'b': 2, 'c': 3}
精彩片段
测量程序用时
import time
start = time.time()
# Your python code
end = time.time()
print('The time for the code executed:', end - start)