数学建模-图与网络模型解题方法和代码实现

本文针对以下几个方面问题进行整理:

  1. 最短路问题
  • 两个指定顶点之间的最短路径
  • 任意顶点之间的最短路径

2.最小生成树问题

  • 求最小生成树

3.网络最大流问题

  • 源点与汇点之间的最大流
  • 基于最大流的最小费用求解

4.旅行商问题

  • 基于哈密顿(Hamilton)圈求解旅行商线性规划

最短路问题

两个指定点最小距离:

%使用graphshortestpath函数
[dist, path, pred]=graphshortestpath(G,S,T)

 G是稀疏矩阵,S是起点,T是终点。dist表示最短距离,path表示最短距离经过的路径节点,pred表示从S到每个节点的最短路径中,目标节点的先驱,即目标节点的前面一个节点。比如一共有6个点,S=1,那么运行这个函数后pred存的就是S=1这个节点到其它节点T'最短路径上T'的前一个节点。这个函数也就是求出图G上S到T的[distpathpred],当不写T时表示求S到其它所有点的[distpathpred]。

任意顶点的最短路径:

!使用graphallshortestpath函数
[dist] = graphallshortestpaths(G)
  • 解题思路:

简单构造稀疏矩阵:

  1. 手动录入权重矩阵
!w(起点,终点)=权重值
w=zeros(4)
w(1,2)=2;w(1,3)=3;w(1,4)=8; 
w(2,3)=6;w(2,4)=6;
G=sparse(w); 
%如果是无向图,G=sparse(tril(w'+w)取下三角)

得:

G =

(1,2) 2

(1,3) 3

(2,3) 6

(1,4) 8

(2,4) 6

2. 直接sparse函数生成

%sparse([起点集合],[对应终点集合],[对应权重集合])
G=sparse([1,1,2,1,2],[2,3,3,4,4],[2,3,6,8,6]);
%得到结果和上面相同
%如果是无向图,建议用方法1
对无向图而言:tril(w+w')是在不知道w是上三角还是下三角的情况下,确保取w对应的下三角;若w已知为上三角,稀疏矩阵G=sparse(w');若已知w为下三角,稀疏矩阵G=sparse(w);

例题:某公司在六个城市c1,c2,..c6中有分公司,从ci(1..6)到cj(1..6)的距离c(i,j)记在下述矩阵中,求ci到其他城市的最短距离。

050402510
500152025
1501020
40201001025
252010055
102525550
clear;
clc;
w=zeros(6);
w(1,2)=50;w(1,4)=40;w(1,5)=25;w(1,6)=10;
w(2,3)=15;w(2,4)=20;w(2,6)=25;
w(3,4)=10;w(3,5)=20;
w(4,5)=10;w(4,6)=25;
w(5,6)=55;
%无向图
G=sparse(w');
a=graphallshortestpaths(G,'Direct',0)
%记住要加Direct  0/false 说明是无向图 1/true则为有向图
得:
a =

0 35 45 35 25 10
35 0 15 20 30 25
45 15 0 10 20 35
35 20 10 0 10 25
25 30 20 10 0 35
10 25 35 25 35 0

例如第一行表示c1到ci(1..6)最短距离分别为[0,35,45,35,25,10].

最小生成树问题

同样直接运用graphminspantree函数并加一些图形显示参数即可

例:北京(Pe)、东京(T)、纽约(N)、墨西哥城(M)、伦敦(L)、巴黎(Pa)各城市之间航线距离如下表

LMNPaPeT
L5635215160
M5621577870
N3521366868
Pa2157365161
Pe5178685113
T6070686113

求由上述交通网络数据确定的最小生成树:

clc, clear
a=zeros(6); %邻接矩阵初始化
a(1,[2:6])=[56 35 21 51 60]; %输入邻接矩阵的上三角元素
a(2,[3:6])=[21 57 78 70];
a(3,[4:6])=[36 68 68];
a(4,[5 6])=[51 61]; a(5,6)=13;
a=a'; a=sparse(a); %变换成下三角矩阵,并转化成工具箱所需要的稀疏矩阵
[ST,pred] = graphminspantree(a,'method','Kruskal') %调用工具箱求最小生成树并定义用kruskal算法求解
nodestr={'L','M','N','Pa','Pe','T'}; %输入顶点名称的字符细胞数组
h=view(biograph(ST,nodestr,'ShowArrows','on','ShowWeights','on'))%将节点名称显示在图形上,并显示箭头以及对应的权重
h.EdgeType='segmented'; %边的连接为线段
h.LayoutType='equilibrium'; dolayout(h) %设置图形布局属性,并刷新图形布局
graphminspantree不需要指定Direct是0/1,但对于无向图仍然需要将输入得稀疏矩阵转为下三角矩阵。

网络最大流问题

同样,我们只需调用graphmaxflow函数即可

求最大流:

clc,clear
a=zeros(6);
%标号s=1 v1=2 v3=3 v2=4 v4=5 t=6
a(1,2)=8;a(1,3)=7;
a(2,3)=5;a(2,4)=9;
a(3,5)=9;
%有向图 不是上三角或下三角矩阵
a(4,3)=2;a(4,6)=5;
a(5,4)=6;a(5,6)=10;
%有向图 直接取稀疏矩阵
a=sparse(a);
%1,6表示求源点s和汇点t之间的最大流
[b,c]=graphmaxflow(a,1,6)
%b返回最大流 c返回每条管道对应的流量
得:
b =
14
c =
(1,2) 8.0000
(1,3) 6.0000
(2,3) 1.0000
(4,3) 2.0000
(2,4) 7.0000
(3,5) 9.0000
(4,6) 5.0000
(5,6) 9.0000

最大流最小费用问题再加上一定的约束即可,这里不再细说.

旅行商问题

旅行商问题是经典得哈密顿圈图论问题,具体可以自行百度其原理。这里给出lingo求解源码,只需带入初始矩阵即可。

约束条件:

+

1=2 转换为不等式使程序求解速度更快

model:
sets:city / 1..10/: u;link(city, city):dist,x;
endsets   n = @size(city);
data:   dist =  0  8  5  9  12 14 12 16 17 228  0  9 15  17 8  11 18 14 225  9  0  7  9  11 7  12 12 179  15 7  0  3  17 10 7  15 1812 17 9  3  0  8  10 6  15 1814  8 11 17 8  0  9  14 8  1612 11 7 10 10  9  0  8  6  1116 18 12 7  6  14 8  0  11 1117 14 12 15 15 8  6  11 0  1022 22 17 18 15 16 11 11 10  0;
enddatamin = @sum(link:dist*x);@FOR(city(K):@sum(city(I)|I#ne#K:x(I,K)=1;@sum(city(J)|J#ne# K: x( K, J))=1;);@for(city(I)|I#gt#1:@for(city(J)|J#gt#1#and#I#ne#J:u(I)-u(J)+n*x(I,J)<=n-1););@for(city(I)|I#gt#1:u(I)<=n-2);@for(link:@bin(x));
end
!只需替换data中 dist的距离矩阵以及初始化条件city的维数即可

总结

对于求解最小路径、最大流、最小生成树等问题使用matalab工具箱函数即可。统一的,对于有向图直接取稀疏矩阵,对于无向图需要取其下三角矩阵再求稀疏矩阵。

写了一天,累die....打球去了,希望可以帮助更多的人更好的理解和运用这些算法。如有不当,请指正。

参考书目:

数学建模算法与应用

数学模型算法与应用模型与解答

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/148388.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis整合Spring Boot扫描Mapper相关配置

MyBatis是一款 Java 平台的优秀数据库映射框架&#xff0c;支持 XML 定义或注解&#xff0c;免除了几乎所有的 JDBC 代码以及设置参数和获取结果集的工作。 针对 Spring 提供 Mapper 扫描注解&#xff1a; 集成 Spring Boot 时&#xff0c;可以通过 MapperScan 注解&#xff0…

【2021集创赛】基于arm Cortex-M3处理器与深度学习加速器的实时人脸口罩检测 SoC

团队介绍 参赛单位&#xff1a;深圳大学 队伍名称&#xff1a;光之巨人队 指导老师&#xff1a;钟世达、袁涛 参赛队员&#xff1a;冯昊港、潘家豪、慕镐泽 图1 团队风采 1. 项目简介 新冠疫情席卷全球&#xff0c;有效佩戴口罩可以极大程度地减小病毒感染的风险。本项目开发…

【数据结构&C++】二叉平衡搜索树-AVL树(25)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.AVL树的概念二.AVL树节点的定义(代码…

mysql练习1

-- 1.查询出部门编号为BM01的所有员工 SELECT* FROMemp e WHEREe.deptno BM01; -- 2.所有销售人员的姓名、编号和部门编号。 SELECTe.empname,e.empno,e.deptno FROMemp e WHEREe.empstation "销售人员";-- 3.找出奖金高于工资的员工。 SELECT* FROMemp2 WHE…

『Spring Boot Actuator Spring Boot Admin』 实现应用监控管理

前言 本文将会使用 Spring Boot Actuator 组件实现应用监视和管理&#xff0c;同时结合 Spring Boot Admin 对 Actuator 中的信息进行界面化展示&#xff0c;监控应用的健康状况&#xff0c;提供实时警报功能 Spring Boot Actuator 简介 官方文档&#xff1a;Production-rea…

python算法例10 整数转换为罗马数字

1. 问题描述 给定一个整数&#xff0c;将其转换为罗马数字&#xff0c;要求返回结果的取值范围为1~3999。 2. 问题示例 4→Ⅳ&#xff0c;12→Ⅻ&#xff0c;21→XⅪ&#xff0c;99→XCIX。 3. 代码实现 def int_to_roman(num):val [1000, 900, 500, 400,100, 90, 50, 40…

蓝桥杯每日一题2023.11.19

题目描述 “蓝桥杯”练习系统 (lanqiao.cn) 题目分析 首先想到的方法为dfs去寻找每一个数&#xff0c;但发现会有超时 #include<bits/stdc.h> using namespace std; const int N 2e5 10; int n, cnt, a[N]; void dfs(int dep, int sum, int start) {if(dep 4){if(s…

SpirngBoot + Vue 前后端分离开发工具代码

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Java从入门到精通 ✨特色专栏&#xf…

软件测试技术之地图导航的测试用例

外观测试 屏幕显示不能有花屏、黑点和闪屏&#xff0c;清晰度、亮度、颜色要正常。 检测所有按键都能起到相应作用&#xff0c;是否手感不良。 UI显示状态、颜色、清晰度、效果。 控制&#xff1a;放大&#xff0c;缩小&#xff0c;音量调节功能测试。 交叉路口查询测试&am…

HAL库STM32串口开启DMA接收数据

STM32CubeMx的配置 此博客仅仅作为记录&#xff0c;这个像是有bug一样&#xff0c;有时候好使&#xff0c;有时候不好&#xff0c;所以趁现在好使赶紧记录一下&#xff0c;很多地方用到串口接收数据&#xff0c;DMA又是一种非常好的接收方式&#xff0c;可以节约CPU的时间&…

Redis(哈希Hash和发布订阅模式)

哈希是一个字符类型字段和值的映射表。 在Redis中&#xff0c;哈希是一种数据结构&#xff0c;用于存储键值对的集合。哈希可以理解为一个键值对的集合&#xff0c;其中每个键都对应一个值。哈希在Redis中的作用主要有以下几点&#xff1a; 1. 存储对象&#xff1a;哈希可以用…

米家竞品分析

一、项目描述 1. 竞品分析描述 分析市场直接竞品和潜在竞品&#xff0c;优化产品核心结构和页面布局&#xff0c;确立产品核心功能定位。了解目标用户核心需求&#xff0c;挖掘用户魅力型需求&#xff0c;以及市场现状为产品迭代做准备。 2. 产品测试环境 二、市场 1. 行业…

AI自动直播软件,ai无人直播工具2.0支持多平台矩阵直播一键同步直播脚本内容【直播脚本+使用技术教程】

AI实景直播软件简介&#xff1a; 支持一台手机自动直播&#xff0c;支持语音和文字同时回复&#xff0c;商品自动弹窗&#xff0c;支持抖音、快手、视频号、美团平台直播&#xff0c;支持矩阵直播&#xff0c;一键同步直播脚本内容。 设备需求&#xff1a; 安卓手机&#xf…

TensorRT量化实战课YOLOv7量化:YOLOv7-QAT量化

目录 前言1. YOLOv7-QAT流程2. QAT训练流程 前言 手写 AI 推出的全新 TensorRT 模型量化实战课程&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考。 该实战课程主要基于手写 AI 的 Latte 老师所出的 TensorRT下的模型量化&#xff0c;在其课程的基础上&#xff…

在做题中学习(30):字符串相加

思路&#xff1a; 相加时要转换成对应的数字&#xff0c;所以让字符数字-0 如‘9’-‘0’&#xff08;ASCII&#xff09;57-489 9110&#xff0c;会进1&#xff0c;把进位保存起来&#xff0c;只取0头插到新串里。 头插时要转换对应字符数字&#xff0c;所以让对应的数字‘…

数据结构:红黑树的插入实现(C++)

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》 文章目录 一、红黑树二、红黑树的插入三、代码实现总结 一、红黑树 红黑树的概念&#xff1a; 红黑树是一颗二叉搜索树&#xff0c;但在每个节点上增加一个存储位表示节点的颜色&…

深入理解栈与队列:从基本概念到高级实现

&#x1f493; 博客主页&#xff1a;江池俊的博客⏩ 收录专栏&#xff1a;数据结构探索&#x1f449;专栏推荐&#xff1a;✅cpolar ✅C语言进阶之路&#x1f4bb;代码仓库&#xff1a;江池俊的代码仓库&#x1f525;编译环境&#xff1a;Visual Studio 2022&#x1f389;欢迎大…

golang中的并发模型

并发模型 传统的编程语言&#xff08;如C、Java、Python等&#xff09;并非为并发而生的&#xff0c;因此它们面对并发的逻辑多是基于操作系统的线程。其并发的执行单元&#xff08;线程&#xff09;之间的通信利用的也是操作系统提供的线程或进程间通信的原语&#xff0c;比如…

【Unity】单例模式及游戏声音管理类应用

【Unity】单例模式及游戏声音管理类应用 描述 在日常游戏项目开发中&#xff0c;单例模式是一种常用的设计模式&#xff0c;它允许在应用程序的生命周期中只创建一个对象实例&#xff0c;并提供对该实例的全局访问点。通过使用单例模式&#xff0c;可以提高代码的可维护性和可…

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷 2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷A模块基础设施设置/安全加固&#xff08;200分&#xff09;A-1&#xff1a;登录安全加固&#xff08;Windows, Linux&#xff09;A-2&#…