前言
大家好吖,欢迎来到 YY 滴C++系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁
主要内容含:
欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!
目录
- 一.AVL树的概念
- 二.AVL树节点的定义(代码演示)
- 三.Avl树的基本操作:插入
- 四.AVL树的核心操作:旋转
- 【1】新节点插入较高右子树的右侧---右右:左单旋
- 【2】新节点插入较高左子树的左侧—左左:右单旋
- 【3】新节点插入较高左子树的右侧---左右:先左单旋再右单旋
- 【4】新节点插入较高右子树的左侧---右左:先右单旋再左单旋
- 五.AVL树的验证
- 1. 验证其为二叉搜索树
- 2. 验证其为平衡树
- 六.AVL树的性能&引入红黑树
- 七.AVL树的完整代码
一.AVL树的概念
- 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证 每个结点的左右子树高度之差的绝对值不超过1 (需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
- 平衡因子是-1,左比右高1;平衡因子是1,右比左高1;平衡因子是0,左右一样高
- 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
1. 它的左右子树都是AVL树
2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)- 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。
二.AVL树节点的定义(代码演示)
- 除了基本的左右孩子节点与数据外,还需要引入平衡因子
- 由于平衡因子取决于左右子树相对高度,所以节点本身 要能够返回父亲节点 ——> 要设置指向父亲节点的指针
- 注意AVL树节点是三叉链
template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft; // 该节点的左孩子AVLTreeNode<T>* _pRight; // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的父亲节点T _data;int _bf; // 该节点的平衡因子
};
三.Avl树的基本操作:插入
- AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
- AVL树的插入过程:
- 与二叉搜索树同理,二叉搜索树博客传送门:https://blog.csdn.net/YYDsis/article/details/134374001?spm=1001.2014.3001.5501
- 平衡因子的变化步骤:
- 新增在左,parent平衡因子减减
- 新增在右,parent平衡因子加加
- 平衡因子==0,高度不变,直接break
- 平衡因子==1/-1,高度改变-> 会影响祖先 -> 需要继续沿着到根节点root的路径向上更新
- 平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->需要对parent所在子树进行 旋转 操作,让其平衡 (旋转部分放在part4中详解)
- 向上更新,直到根节点(根节点parent==0)
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}//1. 按照二叉搜索树的方式插入新节点Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//2. 调整节点的平衡因子while (parent)//向上更新,直到根节点(根节点parent==0){if (cur == parent->_left)// 1.新增在左,parent平衡因子减减{parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;//2.新增在右,parent平衡因子加加}if (parent->_bf == 0)//3.平衡因子==0,高度不变,直接break{// 更新结束break;}//4.平衡因子==1/-1,高度改变-> 会影响祖先 -> 需要继续沿着到根节点root的路径向上更新else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}//平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->//需要对parent所在子树进行 旋转 操作,让其平衡else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要旋转 (旋转部分为何这么设计放在part4中详解)if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}
四.AVL树的核心操作:旋转
- 根据part3中avl树的基本操作"插入",以下情况会出现旋转
- 平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->需要对parent所在子树进行 旋转 操作,让其平衡 (旋转部分放在part4中详解)
- 所以一共有四种情况分别如下图所示:
- 旋转要注意以下两点:
1. 保持这颗树还是搜索树
2. 变成平衡树&降低其高度
【1】新节点插入较高右子树的右侧—右右:左单旋
- 分析:
- 如下图所示,新节点插入较高右子树的右侧时候,整体会发生“向左的单旋”
- 核心操作:
cur->_right = parent;
parent->_parent = cur;
- 代码展示:
void RotateL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}
【2】新节点插入较高左子树的左侧—左左:右单旋
【3】新节点插入较高左子树的右侧—左右:先左单旋再右单旋
【4】新节点插入较高右子树的左侧—右左:先右单旋再左单旋
五.AVL树的验证
1. 验证其为二叉搜索树
- 如果其通过 中序遍历 可得到一个有序的序列,就说明为二叉搜索树
2. 验证其为平衡树
- 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
- 节点的平衡因子是否计算正确
六.AVL树的性能&引入红黑树
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操
作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。 因此需要
引入红黑树,传送门如下所示:红黑树博客传送门:
七.AVL树的完整代码
#pragma once#include<iostream>
#include<assert.h>
using namespace std;template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// ... 控制平衡// 更新平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;}if (parent->_bf == 0){// 更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要旋转if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}void RotateL(Node* parent){++_rotateCount;Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateR(Node* parent){++_rotateCount;Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){cur->_bf = 0;curleft->_bf = 0;parent->_bf = 0;}else if (bf == 1){cur->_bf = 0;curleft->_bf = 0;parent->_bf = -1;}else if (bf == -1){cur->_bf = 1;curleft->_bf = 0;parent->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;int bf = curright->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;cur->_bf = 0;curright->_bf = 0;}else if (bf == -1){parent->_bf = 1;cur->_bf = 0;curright->_bf = 0;}else if (bf == 1){parent->_bf = 0;cur->_bf = -1;curright->_bf = 0;}}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;int leftHight = Height(root->_left);int rightHight = Height(root->_right);if (rightHight - leftHight != root->_bf){cout << "平衡因子异常:" <<root->_kv.first<<"->"<< root->_bf << endl;return false;}return abs(rightHight - leftHight) < 2&& IsBalance(root->_left)&& IsBalance(root->_right);}private:Node* _root = nullptr;public:int _rotateCount = 0;
};