【数据结构&C++】二叉平衡搜索树-AVL树(25)

前言

大家好吖,欢迎来到 YY 滴C++系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁
主要内容含:
在这里插入图片描述

欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!

目录

  • 一.AVL树的概念
  • 二.AVL树节点的定义(代码演示)
  • 三.Avl树的基本操作:插入
  • 四.AVL树的核心操作:旋转
    • 【1】新节点插入较高右子树的右侧---右右:左单旋
    • 【2】新节点插入较高左子树的左侧—左左:右单旋
    • 【3】新节点插入较高左子树的右侧---左右:先左单旋再右单旋
    • 【4】新节点插入较高右子树的左侧---右左:先右单旋再左单旋
  • 五.AVL树的验证
      • 1. 验证其为二叉搜索树
      • 2. 验证其为平衡树
  • 六.AVL树的性能&引入红黑树
  • 七.AVL树的完整代码

一.AVL树的概念

  • 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证 每个结点的左右子树高度之差的绝对值不超过1 (需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
  • 平衡因子是-1,左比右高1;平衡因子是1,右比左高1;平衡因子是0,左右一样高
  • 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
    1. 它的左右子树都是AVL树
    2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
    O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

二.AVL树节点的定义(代码演示)

  • 除了基本的左右孩子节点与数据外,还需要引入平衡因子
  • 由于平衡因子取决于左右子树相对高度,所以节点本身 要能够返回父亲节点 ——> 要设置指向父亲节点的指针
  • 注意AVL树节点是三叉链
template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的父亲节点T _data;int _bf;                  // 该节点的平衡因子
};

三.Avl树的基本操作:插入

  • AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:
    1. 按照二叉搜索树的方式插入新节点
    2. 调整节点的平衡因子
  • AVL树的插入过程:
  • 与二叉搜索树同理,二叉搜索树博客传送门:https://blog.csdn.net/YYDsis/article/details/134374001?spm=1001.2014.3001.5501
  • 平衡因子的变化步骤:
  1. 新增在左,parent平衡因子减减
  2. 新增在右,parent平衡因子加加
  3. 平衡因子==0,高度不变,直接break
  4. 平衡因子==1/-1,高度改变-> 会影响祖先 -> 需要继续沿着到根节点root的路径向上更新
  5. 平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->需要对parent所在子树进行 旋转 操作,让其平衡 (旋转部分放在part4中详解)
  6. 向上更新,直到根节点(根节点parent==0)
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}//1. 按照二叉搜索树的方式插入新节点Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//2. 调整节点的平衡因子while (parent)//向上更新,直到根节点(根节点parent==0){if (cur == parent->_left)// 1.新增在左,parent平衡因子减减{parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;//2.新增在右,parent平衡因子加加}if (parent->_bf == 0)//3.平衡因子==0,高度不变,直接break{// 更新结束break;}//4.平衡因子==1/-1,高度改变-> 会影响祖先 -> 需要继续沿着到根节点root的路径向上更新else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}//平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->//需要对parent所在子树进行 旋转 操作,让其平衡else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要旋转     (旋转部分为何这么设计放在part4中详解)if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}

四.AVL树的核心操作:旋转

  • 根据part3中avl树的基本操作"插入",以下情况会出现旋转
  • 平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->需要对parent所在子树进行 旋转 操作,让其平衡 (旋转部分放在part4中详解)
  • 所以一共有四种情况分别如下图所示:
  • 旋转要注意以下两点:
    1. 保持这颗树还是搜索树
    2. 变成平衡树&降低其高度

【1】新节点插入较高右子树的右侧—右右:左单旋

  • 分析:
  • 如下图所示,新节点插入较高右子树的右侧时候,整体会发生“向左的单旋”

在这里插入图片描述

  • 核心操作:
    cur->_right = parent;
    parent->_parent = cur;
  • 代码展示:
void RotateL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}

【2】新节点插入较高左子树的左侧—左左:右单旋

【3】新节点插入较高左子树的右侧—左右:先左单旋再右单旋

【4】新节点插入较高右子树的左侧—右左:先右单旋再左单旋

五.AVL树的验证

1. 验证其为二叉搜索树

  • 如果其通过 中序遍历 可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确

六.AVL树的性能&引入红黑树

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
    样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操
    作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
    有可能一直要让旋转持续到根的位置。
    因此:如果需要一种查询高效且有序的数据结构,而且数
    据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。 因此需要
    引入红黑树,传送门如下所示:

  • 红黑树博客传送门:

七.AVL树的完整代码

#pragma once#include<iostream>
#include<assert.h>
using namespace std;template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;  // balance factorAVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// ... 控制平衡// 更新平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;}if (parent->_bf == 0){// 更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要旋转if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}void RotateL(Node* parent){++_rotateCount;Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateR(Node* parent){++_rotateCount;Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){cur->_bf = 0;curleft->_bf = 0;parent->_bf = 0;}else if (bf == 1){cur->_bf = 0;curleft->_bf = 0;parent->_bf = -1;}else if (bf == -1){cur->_bf = 1;curleft->_bf = 0;parent->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;int bf = curright->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;cur->_bf = 0;curright->_bf = 0;}else if (bf == -1){parent->_bf = 1;cur->_bf = 0;curright->_bf = 0;}else if (bf == 1){parent->_bf = 0;cur->_bf = -1;curright->_bf = 0;}}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;int leftHight = Height(root->_left);int rightHight = Height(root->_right);if (rightHight - leftHight != root->_bf){cout << "平衡因子异常:" <<root->_kv.first<<"->"<< root->_bf << endl;return false;}return abs(rightHight - leftHight) < 2&& IsBalance(root->_left)&& IsBalance(root->_right);}private:Node* _root = nullptr;public:int _rotateCount = 0;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/148384.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql练习1

-- 1.查询出部门编号为BM01的所有员工 SELECT* FROMemp e WHEREe.deptno BM01; -- 2.所有销售人员的姓名、编号和部门编号。 SELECTe.empname,e.empno,e.deptno FROMemp e WHEREe.empstation "销售人员";-- 3.找出奖金高于工资的员工。 SELECT* FROMemp2 WHE…

『Spring Boot Actuator Spring Boot Admin』 实现应用监控管理

前言 本文将会使用 Spring Boot Actuator 组件实现应用监视和管理&#xff0c;同时结合 Spring Boot Admin 对 Actuator 中的信息进行界面化展示&#xff0c;监控应用的健康状况&#xff0c;提供实时警报功能 Spring Boot Actuator 简介 官方文档&#xff1a;Production-rea…

Linux 怎样通过win 远程桌面连接链接Linux后台服务器的可视化图形界面

目的概述&#xff1a;因不想后台直接操作&#xff08;操作不便&#xff09;&#xff0c;所以想到能否基于xrdp协议服务利用 win自带的远程桌面服务&#xff0c;链接到后台&#xff0c;类似于vnc的使用方式&#xff0c;涉及操作系统版本&#xff1a;win11 、 CentOS 7.4 、CentO…

openai/chatgpt的api接口,各个模型的最大输入token一览表

chatgpt的各个3.5api模型接口的最大输入量一览表&#xff1a; MODELDESCRIPTIONCONTEXT WINDOWTRAINING DATAgpt-3.5-turbo-1106Updated GPT 3.5 Turbo New The latest GPT-3.5 Turbo model with improved instruction following, JSON mode, reproducible outputs, parallel…

python算法例10 整数转换为罗马数字

1. 问题描述 给定一个整数&#xff0c;将其转换为罗马数字&#xff0c;要求返回结果的取值范围为1~3999。 2. 问题示例 4→Ⅳ&#xff0c;12→Ⅻ&#xff0c;21→XⅪ&#xff0c;99→XCIX。 3. 代码实现 def int_to_roman(num):val [1000, 900, 500, 400,100, 90, 50, 40…

蓝桥杯每日一题2023.11.19

题目描述 “蓝桥杯”练习系统 (lanqiao.cn) 题目分析 首先想到的方法为dfs去寻找每一个数&#xff0c;但发现会有超时 #include<bits/stdc.h> using namespace std; const int N 2e5 10; int n, cnt, a[N]; void dfs(int dep, int sum, int start) {if(dep 4){if(s…

SpirngBoot + Vue 前后端分离开发工具代码

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Java从入门到精通 ✨特色专栏&#xf…

软件测试技术之地图导航的测试用例

外观测试 屏幕显示不能有花屏、黑点和闪屏&#xff0c;清晰度、亮度、颜色要正常。 检测所有按键都能起到相应作用&#xff0c;是否手感不良。 UI显示状态、颜色、清晰度、效果。 控制&#xff1a;放大&#xff0c;缩小&#xff0c;音量调节功能测试。 交叉路口查询测试&am…

Python OpenCV 视频抽帧处理并保存

上篇文章中基于OpenCV实现图像处理后&#xff0c;类似的&#xff0c;也可以对视频进行处理。OpenCV库可以将视频的每一帧读取出来&#xff0c;然后对每一帧图像做相应的操作&#xff0c;并保存成新的视频。 1. 读取视频&#xff0c;获取相关参数 import cv2 import numpy as…

【华为OD题库-027】代码编辑器-java

题目 某公司为了更高效的编写代码,邀请你开发一款代码编辑器程序。程序的输入为已有的代码文本和指令序列&#xff0c;程序需输出编辑后的最终文本。指针初始位置位于文本的开头。 支持的指令(X为大于等于0的整数,word为无空格的字符串): FORWARD X&#xff1a;指针向前(右)移动…

app使用

font-face{font-family:‘kaishu’; src: url(data:application/font-ttf;charsetutf-8;base64,AAEAAAASAQAABAAgRFNJR5PpVzIAAAEsAAAacEdTVUIzhvftAAAbnAAAAXBPUy8yY8pHoQAAHQwAAABWY21hcAsTB9YAAB1kAADD5GN2dCAvAiIAADhSAAAA5pmcGdt/siFHQAA5OQAAAOiZ2FzcAAXAAkAAOiIAAAAEGds…

GEE生物量和碳储量——指定研究区利用遥感影像红色波段阈值(大津法)提取森林范围

简介 森林提取是指利用遥感技术从高分辨率遥感影像中自动或半自动地提取森林分布信息的过程。传统的森林提取方法主要基于数学模型和规则,但随着深度学习技术的发展,利用卷积神经网络(CNN)进行森林提取的方法越来越受到关注。 具体的步骤如下: 1. 数据获取:获取高分辨率…

HAL库STM32串口开启DMA接收数据

STM32CubeMx的配置 此博客仅仅作为记录&#xff0c;这个像是有bug一样&#xff0c;有时候好使&#xff0c;有时候不好&#xff0c;所以趁现在好使赶紧记录一下&#xff0c;很多地方用到串口接收数据&#xff0c;DMA又是一种非常好的接收方式&#xff0c;可以节约CPU的时间&…

Redis(哈希Hash和发布订阅模式)

哈希是一个字符类型字段和值的映射表。 在Redis中&#xff0c;哈希是一种数据结构&#xff0c;用于存储键值对的集合。哈希可以理解为一个键值对的集合&#xff0c;其中每个键都对应一个值。哈希在Redis中的作用主要有以下几点&#xff1a; 1. 存储对象&#xff1a;哈希可以用…

米家竞品分析

一、项目描述 1. 竞品分析描述 分析市场直接竞品和潜在竞品&#xff0c;优化产品核心结构和页面布局&#xff0c;确立产品核心功能定位。了解目标用户核心需求&#xff0c;挖掘用户魅力型需求&#xff0c;以及市场现状为产品迭代做准备。 2. 产品测试环境 二、市场 1. 行业…

css 设置网页最小字体为12px

谷歌浏览器默认最小字体为12px&#xff0c;但保不准万一有一天谷歌取消这个默认设置&#xff0c;或者一些人在设置中改了最小字体&#xff0c;为了防止万一&#xff0c;故系统设置了最小字体&#xff0c;主要利用了min和var的特性 :root {--responsive-font-size-primary: max…

AI自动直播软件,ai无人直播工具2.0支持多平台矩阵直播一键同步直播脚本内容【直播脚本+使用技术教程】

AI实景直播软件简介&#xff1a; 支持一台手机自动直播&#xff0c;支持语音和文字同时回复&#xff0c;商品自动弹窗&#xff0c;支持抖音、快手、视频号、美团平台直播&#xff0c;支持矩阵直播&#xff0c;一键同步直播脚本内容。 设备需求&#xff1a; 安卓手机&#xf…

TensorRT量化实战课YOLOv7量化:YOLOv7-QAT量化

目录 前言1. YOLOv7-QAT流程2. QAT训练流程 前言 手写 AI 推出的全新 TensorRT 模型量化实战课程&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考。 该实战课程主要基于手写 AI 的 Latte 老师所出的 TensorRT下的模型量化&#xff0c;在其课程的基础上&#xff…

在做题中学习(30):字符串相加

思路&#xff1a; 相加时要转换成对应的数字&#xff0c;所以让字符数字-0 如‘9’-‘0’&#xff08;ASCII&#xff09;57-489 9110&#xff0c;会进1&#xff0c;把进位保存起来&#xff0c;只取0头插到新串里。 头插时要转换对应字符数字&#xff0c;所以让对应的数字‘…

基础算法:大整数减法

基础算法&#xff1a;大整数减法 1169&#xff1a;大整数减法 时间限制: 1000 ms 内存限制: 65536 KB 【题目描述】 求两个大的正整数相减的差。 【输入】 共2行&#xff0c;第1行是被减数a&#xff0c;第2行是减数b(a > b)。每个大整数不超过200位&#xff0c;不会有多余…