目录
一、灰色预测的原理
二、灰色预测的应用及python实现
一、灰色预测的原理
灰色预测是以灰色模型为基础,灰色模型GM(n,h)是微分方程模型,可用于描述对象做长期、连续、动态的反应。其中,n代表微分方程式的阶数,h代表微分方程式的变化数目。在诸多的灰色模型中,以灰色系统中单序列一阶线性微分方程模型GM(1,1)最为常见。
下面说明GM(1,1)模式:
设有原始数据列,n为数据个数,则可以根据以下步骤来建立GM(1,1)模型:
步骤一:
与原来统计累加以便减弱随机数据序列的波动性与 随机性,从而得到新数据序列:
其中,中各数据表示前几项的相加,即:
步骤二:
令为的紧邻均值生成序列:
其中,
步骤三:
建立GM(1,1) 的灰微分方程为:
灰微分方程的白化方程为:
其中,a为发展系数,b为内生控制系数。
步骤四:
模型求解:构造矩阵B和向量Y:
,
步骤五:
设为待估参数向量,即:
这是利用正规方程得到的闭式解。
步骤六:
求解白化方程,可得到灰色预测的离散时间响应函数:
那么相应的时间相应序列为:
取,则所得的累加预测值为:
将预测值还原为:
二、灰色预测的应用及python实现
某公司根据2015-2020年的产品的销售额,试构建GM(1,1)预测模型,并预测2021年的产品销售额。
原始数据为:
Python实现代码:
import numpy as npclass GM:def __init__(self,N,n,data):''':param N: the number of data:param n: the number of data that is needs to be predicted:param data: time series'''self.N=Nself.n=nself.data=datadef prediction(self,a,b):''':param a: parameter a of the grey prediction model:param b: parameter b of the grey prediction model:return: a list of prediction'''# a list to save n preditionpre_data=[]# calculating the predictionfor i in range(self.n):pre=(self.data[0]-b/a)*(1-np.exp(a))*np.exp(-a*(self.N+i))pre_data.append(pre[0])return pre_datadef residual_test(self,a,b):''':param a: parameter a of the grey prediction model:param b: parameter b of the grey prediction model'''# prediction od raw datapre_rawdata=self.sequence_prediction(a,b)# calculating absolute residualabs_residual=[]for i in range(self.N):r=abs(pre_rawdata[i]-self.data[i])abs_residual.append(r)# calculating relative residualrel_residual=[]for i in range(self.N):rel=abs_residual[i]/abs(self.data[0])rel_residual.append(rel)# calculating average relative residualavg_residual=0for i in range(self.N):avg_residual=avg_residual+rel_residual[i]avg_residual=avg_residual/self.Nprint("average relative residual: {}".format(avg_residual[0]))if avg_residual<0.01:print("model accuracy: excellent(Level I)")elif avg_residual<0.05:print("model accuracy: qualified(LevelⅡ)")elif avg_residual<0.10:print("model accuracy: barely qualified(Level Ⅲ)")else:print("model accuracy: unqualified(Level Ⅳ)")def sequence_prediction(self,a,b):''':param a: parameter a of the grey prediction model:param b: parameter b of the grey prediction model:return: prediction of raw data'''pre_rawdata=[]pre_rawdata.append(self.data[0])for i in range(1,self.N):pre_raw=(self.data[0]-b/a)*(1-np.exp(a))*np.exp(-a*(i))pre_rawdata.append(pre_raw)return pre_rawdatadef GM11(self):''':return: n prediction if the grey prediction model can be usedand parameter a and parameter b'''# accumulate raw datacumdata=[]for i in range(self.N):s=0for j in range(i+1):s=s+self.data[j]cumdata.append(s)# calculating the nearest neighbor mean generation sequenceZ=[] # len(Z)=N-1for i in range(1,self.N):z=0.5*cumdata[i]+0.5*cumdata[i-1]Z.append(z)# construct data matrix B and data vector YB=np.array([[-Z[i],1] for i in range(self.N-1)])Y=np.array([[self.data[i]] for i in range(1,self.N)])# calculating parameter a and parameter bA=np.dot(np.dot(np.linalg.inv(np.dot(B.T,B)),B.T),Y)a=A[0]b=A[1]# determine whether the grey prediction model can be usedif (-1)*a>1:print("the grey prediction model can not be used")else:#print("a={}".format(a[0]))#print("b={}".format(b[0]))# derive a prediction model and predictpre_data=self.prediction(a,b)return pre_data,a,bif __name__=="__main__":data=[2.67,3.13,3.25,3.36,3.56,3.72]N=6n=1# create objectgrey_prediction=GM(N,n,data)# get predictionpre_data,a,b=grey_prediction.GM11()# get average relative residualavg_residual=grey_prediction.residual_test(a,b)print("predicted data: {}".format(pre_data[0]))
运行结果: