Spring Cloud学习(九)【Elasticsearch 分布式搜索引擎01】

文章目录

  • 初识 elasticsearch
    • 了解 ES
    • 倒排索引
    • ES 的一些概念
    • 安装es、kibana
      • 安装elasticsearch
      • 部署kibana
    • 分词器
      • 安装IK分词器
      • ik分词器-拓展词库
  • 索引库操作
    • mapping 映射属性
    • 索引库的 CRUD
  • 文档操作
    • 添加文档
    • 查看、删除文档
    • 修改文档
    • Dynamic Mapping
  • RestClient 操作索引库
    • 什么是RestClient
    • 创建索引库
    • 删除索引库
    • 判断索引库是否存在
  • RestClient操作文档
    • 新增文档
    • 查询文档
    • 修改文档
    • 删除文档
    • 批量导入文档


初识 elasticsearch

了解 ES

Elasticsearch 是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。

在这里插入图片描述

elasticsearch 结合 kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。

在这里插入图片描述

elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据

在这里插入图片描述

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。

Lucene的优势:

  • 易扩展
  • 高性能(基于倒排索引)

Lucene的缺点:

  • 只限于Java语言开发
  • 学习曲线陡峭
  • 不支持水平扩展

2004年Shay Banon基于Lucene开发了Compass
2010年Shay Banon 重写了Compass,取名为Elasticsearch。
官网地址: https://www.elastic.co/cn/

目前最新的版本是:7.12.1
相比与lucene,elasticsearch具备下列优势:

  • 支持分布式,可水平扩展
  • 提供Restful接口,可被任何语言调用

搜索引擎技术排名:

  1. Elasticsearch:开源的分布式搜索引擎
  2. Splunk:商业项目
  3. Solr:Apache的开源搜索引擎

什么是 elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是 elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是 Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

倒排索引

传统数据库(如MySQL)采用正向索引,例如给下表(tb_goods)中的id创建索引:

在这里插入图片描述

正向索引和倒排索引

elasticsearch采用倒排索引:

  • 文档(document):每条数据就是一个文档
  • 词条(term):文档按照语义分成的词语

在这里插入图片描述

posting list

倒排索引中包含两部分内容:

  • 词条词典(Term Dictionary):记录所有词条,以及词条与倒排列表(Posting List)之间的关系,会给词条创建索引,提高查询和插入效率
  • 倒排列表(Posting List):记录词条所在的文档id、词条出现频率 、词条在文档中的位置等信息
    • 文档id:用于快速获取文档
    • 词条频率(TF):文档在词条出现的次数,用于评分

在这里插入图片描述

什么是文档和词条?

  • 每一条数据就是一个文档
  • 对文档中的内容分词,得到的词语就是词条

什么是正向索引?

  • 基于文档id创建索引。查询词条时必须先找到文档,而后判断是否包含词条

什么是倒排索引?

  • 对文档内容分词,对词条创建索引,并记录词条所在文档的信息。查询时先根据词条查询到文档id,而后获取到文档

ES 的一些概念

文档

elasticsearch是面向文档存储的,可以是数据库中的一条商品数据,一个订单信息。
文档数据会被序列化为json格式后存储在elasticsearch中。

在这里插入图片描述

索引(index):相同类型的文档的集合
映射(mapping):索引中文档的字段约束信息,类似表的结构约束

在这里插入图片描述

概念对比

在这里插入图片描述

架构

Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算

在这里插入图片描述

文档:一条数据就是一个文档,es中是Json格式
字段:Json文档中的字段
索引:同类型文档的集合
映射:索引中文档的约束,比如字段名称、类型
elasticsearch与数据库的关系:

  • 数据库负责事务类型操作
  • elasticsearch 负责海量数据的搜索、分析、计算

安装es、kibana

安装elasticsearch

部署单点es

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

加载镜像

通过 docker pull 命令拉取

elasticsearch

docker pull elasticsearch:7.16.2

arm linux

docker pull arm64v8/elasticsearch:7.16.2

kibana

docker pull kibana:7.16.2

运行

运行docker命令,部署单点es:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.16.2

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://10.211.55.6:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

  1. 部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.16.2
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述

此时,在浏览器输入地址访问:http://10.211.55.6:5601,即可看到结果

在这里插入图片描述

  1. DevTools

kibana 中提供了一个DevTools界面:

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

分词器

es在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。
我们在kibana的DevTools中测试:

POST /_analyze
{"text": "java学习中,勿扰?程序员", "analyzer": "standard"
}

语法说明:

  • POST:请求方式
  • /_analyze:请求路径,这里省略了http://10.211.55.6/:9200,有kibana帮我们补充
  • 请求参数,json风格:
    • analyzer:分词器类型,这里是默认的standard分词器
    • text:要分词的内容

安装IK分词器

处理中文分词,一般会使用IK分词器。https://github.com/medcl/elasticsearch-analysis-ik

在线安装ik插件

# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch

离线安装ik插件

1)查看数据卷目录

安装插件需要知道 elasticsearch 的 plugins 目录位置,而我们用了数据卷挂载,因此需要查看 elasticsearch 的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[{"CreatedAt": "2023-11-17T15:52:19+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

把ik分词器解压缩,重命名为ik

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

5)测试

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

POST /_analyze
{"text": "java学习中,勿扰?程序员", "analyzer": "ik_max_word"
}

结果

{"tokens" : [{"token" : "java","start_offset" : 0,"end_offset" : 4,"type" : "ENGLISH","position" : 0},{"token" : "学习","start_offset" : 4,"end_offset" : 6,"type" : "CN_WORD","position" : 1},{"token" : "中","start_offset" : 6,"end_offset" : 7,"type" : "CN_CHAR","position" : 2},{"token" : "勿扰","start_offset" : 8,"end_offset" : 10,"type" : "CN_WORD","position" : 3},{"token" : "程序员","start_offset" : 11,"end_offset" : 14,"type" : "CN_WORD","position" : 4},{"token" : "程序","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 5},{"token" : "员","start_offset" : 13,"end_offset" : 14,"type" : "CN_CHAR","position" : 6}]
}

ik分词器-拓展词库

要拓展ik分词器的词库,只需要修改一个ik分词器目录中的 config 目录中的IkAnalyzer.cfg.xml 文件:

在这里插入图片描述

然后在名为 ext.dic 的文件中,添加想要拓展的词语即可:

在这里插入图片描述

要禁用某些敏感词条,只需要修改一个ik分词器 目录中的 config 目录中的IkAnalyzer.cfg.xml 文件:

在这里插入图片描述

然后在名为 stopword.dic 的文件中,添加想要拓展的词语即可:

在这里插入图片描述

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

索引库操作

mapping 映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

在这里插入图片描述

mapping常见属性有哪些?

  • type:数据类型
  • index:是否索引
  • analyzer:分词器
  • properties:子字段

type常见的有哪些?

  • 字符串:text、keyword
  • 数字:long、integer、short、byte、double、float
  • 布尔:boolean
  • 日期:date
  • 对象:object

索引库的 CRUD

ES中通过Restful请求操作索引库、文档。请求内容用DSL语句来表示。创建索引库和mapping的DSL语法如下:

在这里插入图片描述

# 创建索引库
PUT /wxx
{"mappings": {"properties": {"info": {"type": "text","analyzer": "ik_smart"},"email": {"type": "keyword","index": false},"name": {"type": "object","properties": {"firstName": {"type": "keyword"},"lastName": {"type": "keyword"}}}}}
}

在这里插入图片描述

查看索引库语法:

GET /索引库名 

示例:

GET /wxx

删除索引库的语法:

DELETE /索引库名 

示例:

DELETE /wxx

修改索引库

索引库和mapping一旦创建无法修改,但是可以添加新的字段,语法如下:

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例:

PUT /wxx/_mapping
{"properties": {"age":{"type": "integer"}}
}

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

文档操作

添加文档

新增文档的 DSL 语法如下:

在这里插入图片描述

查看、删除文档

查看文档语法:

GET /索引库名/_doc/文档id 

示例:

GET /wxx/_doc/文档id 

删除索引库的语法:

DELETE /索引库名/_doc/文档id 

示例:

DELETE /wxx/_doc/文档id 

修改文档

方式一:全量修改,会删除旧文档,添加新文档

在这里插入图片描述

方式二:增量修改,修改指定字段值

在这里插入图片描述

文档操作有哪些?

  • 创建文档:POST /索引库名/_doc/文档id { json文档 }
  • 查询文档:GET /索引库名/_doc/文档id
  • 删除文档:DELETE /索引库名/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /索引库名/_doc/文档id { json文档 }
    • 增量修改:POST /索引库名/_update/文档id { “doc”: {字段}}

Dynamic Mapping

当我们向ES中插入文档时,如果文档中字段没有对应的mapping,ES会帮助我们字段设置mapping,规则如下:
在这里插入图片描述

我们插入一条新的数据,其中包含4个没有mapping的字段:

在这里插入图片描述

  • 插入文档时,es会检查文档中的字段是否有mapping,如果没有则按照默认mapping规则来创建索引。
  • 如果默认mapping规则不符合你的需求,一定要自己设置字段mapping

RestClient 操作索引库

什么是RestClient

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

在这里插入图片描述

利用JavaRestClient实现创建、删除索引库,判断索引库是否存在

根据课前资料提供的酒店数据创建索引库,索引库名为hotel,mapping属性根据数据库结构定义。
基本步骤如下:

  1. 导入课前资料Demo
  2. 分析数据结构,定义mapping属性
  3. 初始化JavaRestClient
  4. 利用JavaRestClient创建索引库
  5. 利用JavaRestClient删除索引库
  6. 利用JavaRestClient判断索引库是否存在
DROP TABLE IF EXISTS `tb_hotel`;
CREATE TABLE `tb_hotel`  (`id` bigint(20) NOT NULL COMMENT '酒店id',`name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店名称',`address` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店地址',`price` int(10) NOT NULL COMMENT '酒店价格',`score` int(2) NOT NULL COMMENT '酒店评分',`brand` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店品牌',`city` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '所在城市',`star_name` varchar(16) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '酒店星级,1星到5星,1钻到5钻',`business` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '商圈',`latitude` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '纬度',`longitude` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '经度',`pic` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '酒店图片',PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Compact;

步骤1:导入课前资料Demo

首先导入课前资料提供的数据库数据:

在这里插入图片描述

然后导入课前资料提供的项目:

在这里插入图片描述

步骤2:分析数据结构

mapping要考虑的问题:
字段名、数据类型、是否参与搜索、是否分词、如果分词,分词器是什么?

ES中支持两种地理坐标数据类型:

  • geo_point:由纬度(latitude)和经度(longitude)确定的一个点。例如:“32.8752345, 120.2981576”
  • geo_shape:有多个geo_point组成的复杂几何图形。例如一条直线,“LINESTRING (-77.03653 38.897676, -77.009051 38.889939)”

字段拷贝可以使用copy_to属性将当前字段拷贝到指定字段。示例:

在这里插入图片描述

步骤3:初始化JavaRestClient

  1. 引入es的RestHighLevelClient依赖:
<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
  1. 因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties><java.version>1.8</java.version><elasticsearch.version>7.16.2</elasticsearch.version>
</properties>
  1. 初始化RestHighLevelClient:
this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://10.211.55.6:9200")
));

创建索引库

步骤4:创建索引库

在这里插入图片描述

@Test
void testCreateHotelIndex() throws IOException {// 1. 创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2. 准备请求参数:DSL语句request.source(HotelConstants.MAPPING_TEMPLATE, XContentType.JSON);// 3. 发送请求client.indices().create(request, RequestOptions.DEFAULT);
}
# 酒店的mapping
PUT /hotel
{"mappings": {"properties": {"all": {"type": "text","analyzer": "ik_max_word"},"id": {"type": "keyword"},"name": {"type": "text","analyzer": "ik_max_word","copy_to": "all"},"address": {"type": "keyword","index": false},"price": {"type": "integer"},"score": {"type": "integer"},"brand": {"type": "keyword","copy_to": "all"},"city": {"type": "keyword"},"starName": {"type": "keyword"},"business": {"type": "keyword","copy_to": "all"},"location": {"type": "geo_point"},"pic": {"type": "keyword","index": false}}}
}

删除索引库

步骤5:删除索引库、判断索引库是否存在

删除索引库代码如下:

在这里插入图片描述

判断索引库是否存在

判断索引库是否存在

在这里插入图片描述

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

RestClient操作文档

利用JavaRestClient实现文档的CRUD

去数据库查询酒店数据,导入到hotel索引库,实现酒店数据的CRUD。
基本步骤如下:

  1. 初始化JavaRestClient
  2. 利用JavaRestClient新增酒店数据
  3. 利用JavaRestClient根据id查询酒店数据
  4. 利用JavaRestClient删除酒店数据
  5. 利用JavaRestClient修改酒店数据

新增文档

步骤1:初始化JavaRestClient

新建一个测试类,实现文档相关操作,并且完成JavaRestClient的初始化

在这里插入图片描述

步骤2:添加酒店数据到索引库

先查询酒店数据,然后给这条数据创建倒排索引,即可完成添加:

在这里插入图片描述

@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@Testvoid testInit(){System.out.println(client);}@Testvoid testAddDocument() throws IOException {// 根据 id 查询酒店数据Hotel hotel = hotelService.getById(38665L);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1. 准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());// 2. 准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3. 发送请求client.index(request, RequestOptions.DEFAULT);}@BeforeEachvoid setUp(){this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://10.211.55.6:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

在这里插入图片描述

运行后查看是否添加成功

在这里插入图片描述

查询文档

步骤3:根据id查询酒店数据

根据id查询到的文档数据是json,需要反序列化为java对象:

在这里插入图片描述

修改文档

步骤4:根据id修改酒店数据

修改文档数据有两种方式:
方式一:全量更新。再次写入id一样的文档,就会删除旧文档,添加新文档
方式二:局部更新。只更新部分字段,我们演示方式二

在这里插入图片描述

删除文档

步骤5:根据id删除文档数据

删除文档代码如下:

在这里插入图片描述

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete
  • 准备参数(Index和Update时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete
  • 解析结果(Get时需要)

批量导入文档

利用JavaRestClient批量导入酒店数据到ES

需求:批量查询酒店数据,然后批量导入索引库中
思路:

  1. 利用mybatis-plus查询酒店数据
  2. 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  3. 利用JavaRestClient中的Bulk批处理,实现批量新增文档,示例代码如下

在这里插入图片描述

@Testvoid testBulkRequest() throws IOException {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1. 创建 RequestBulkRequest request = new BulkRequest();// 2. 准备参数,添加多个新增的Requestfor (Hotel hotel : hotels) {// 转换为文档类型 HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3. 发送请求client.bulk(request, RequestOptions.DEFAULT);}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/147837.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录二刷 | 数组 | 移除元素

代码随想录二刷 &#xff5c; 数组 &#xff5c; 移除元素 题目描述解题思路 & 代码实现暴力解法双指针法 题目描述 27. 移除元素 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用…

手搓哈希表、列表、队列,只为了用C语言快速求解华容道游戏,我不是大佬,只是一个游戏算法爱好者

背景 多年前曾经写过C语言求解华容道&#xff0c;当时没有用到哈希表&#xff0c;导致整个查重搜索数组过大&#xff0c;每次求解都得花上数分钟的时间&#xff0c;如今时过境迁&#xff0c;对数据结构和算法有了更深的理解&#xff0c;所以得把这一块补上了。(其实就是最近想…

Redis面经

Redis使用场景 1、缓存&#xff1a; 缓存三兄弟(穿透、击穿、雪崩) 、双写一致、持久化、数据过期策略&#xff0c;数据淘汰策略 2、分布式锁 setnx、redisson 3、消息队列 4、延迟队列 何种数据类型&#xff08;list、zset&#xff09; 缓存三兄弟 缓存穿透 缓存穿透…

Python 如何实现职责链设计模式?什么是职责链设计模式?Python 职责链设计模式示例代码

什么是职责链&#xff08;Chain of Responsibility&#xff09;设计模式&#xff1f; 职责链&#xff08;Chain of Responsibility&#xff09;设计模式是一种行为型设计模式&#xff0c;旨在构建一个对象链&#xff0c;每个对象都有机会处理请求&#xff0c;并且可以将请求传…

动手学深度学习——循环神经网络的从零开始实现(原理解释+代码详解)

文章目录 循环神经网络的从零开始实现1. 独热编码2. 初始化模型参数3. 循环神经网络模型4. 预测5. 梯度裁剪6. 训练 循环神经网络的从零开始实现 从头开始基于循环神经网络实现字符级语言模型。 # 读取数据集 %matplotlib inline import math import torchfrom torch import …

五、hdfs常见权限问题

1、常见问题 2、案例 &#xff08;1&#xff09;问题 &#xff08;2&#xff09;hdfs的超级管理员 &#xff08;3&#xff09;原因 没有使用Hadoop用户对hdfs文件系统进行操作。 在Hadoop文件系统中&#xff0c;Hadoop用户相当于Linux系统中的root用户&#xff0c;是最高级别用…

react实现步进器

创建一个步进器组件&#xff0c;包含当前步骤&#xff08;currentStep&#xff09;的状态以及前进和后退的操作&#xff1a; import React, { useState } from react;function Stepper() {const [currentStep, setCurrentStep] useState(1);const handleNext () > {setCu…

⑩② 【MySQL索引】详解MySQL`索引`:结构、分类、性能分析、设计及使用规则。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ MySQL索引 ⑩② 【MySQL索引】1. 索引2. 索引的…

搞科研、写论文,如何正确使用GPT?AIGC技术解析、提示词工程高级技巧、AI绘图、ChatGPT/GPT4应用

目录 专题一 OpenAI开发者大会最新技术发展及最新功能应用 专题二 AIGC技术解析 专题三 提示词工程高级技巧 专题四 ChatGPT/GPT4的实用案例 专题五 让ChatGPT/GPT4成为你的论文助手 专题六 让ChatGPT/GPT4成为你的编程助手 专题七 让ChatGPT/GPT4进行数据处理 专题八 …

Wordpress页面生成器:Elementor 插件制作网站页面教程(图文完整)

本文来教大家怎么使用Wordpress Elementor页面编辑器插件来自由创建我们的网页内容。很多同学在面对建站的时候,一开始都是热血沸腾信心满满的,等到实际上手的时候就会发现有很多问题都是无法解决的,希望本篇Elementor插件使用指南能够帮助到你。 Wordpress Elementor页面编…

使用VC++实现分段线性变换,直方图均衡化、锐化处理(使用拉普拉斯算子)

图像锐化1 获取源工程可访问huiningLi的gitee可在此工程的基础上进行学习。 实验要求 5.1实验目的、要求 实验目的&#xff1a; &#xff08;1&#xff09;掌握图像增强的原理与相关方法。 &#xff08;2&#xff09;能使用VC实现图像增强的一些相关功能。 实验要求&#xf…

【python】均值、中值和高斯滤波详解和示例

本文对均值、中值和高斯滤波进行详解&#xff0c;以帮助大家理解和使用。 这里写目录标题 均值滤波中值滤波高斯滤波核大小为&#xff08;9,9&#xff09;核大小为&#xff08;51,51&#xff09; 小结 下面是示例中使用的原图。 均值滤波 均值滤波是一种简单的平滑滤波器&…

PyTorch微调权威指南3:使用数据增强

如果你曾经参与过 PyTorch 模型的微调&#xff0c;可能会遇到 PyTorch 的内置变换函数&#xff0c;这使得数据增强变得轻而易举。 即使你之前没有使用过这些功能&#xff0c;也不必担心。 在本文中&#xff0c;我们将深入研究 PyTorch 变换换函数的世界。 我们将探索你可以使用…

CTFhub-RCE-过滤目录分隔符 /

根据源代码信息可知&#xff0c;过滤掉了/ <?php $res FALSE; if (isset($_GET[ip]) && $_GET[ip]) { $ip $_GET[ip]; $m []; if (!preg_match_all("/\//", $ip, $m)) { $cmd "ping -c 4 {$ip}"; exec($cmd,…

【开源】基于Vue.js的高校实验室管理系统的设计和实现

项目编号&#xff1a; S 015 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S015&#xff0c;文末获取源码。} 项目编号&#xff1a;S015&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实…

数据结构与集合源码

我是南城余&#xff01;阿里云开发者平台专家博士证书获得者&#xff01; 欢迎关注我的博客&#xff01;一同成长&#xff01; 一名从事运维开发的worker&#xff0c;记录分享学习。 专注于AI&#xff0c;运维开发&#xff0c;windows Linux 系统领域的分享&#xff01; 本…

【数据结构与算法】线性表 - 顺序表

目录 1. 线性表2.顺序表3.顺序表的优缺点4.实现&#xff08;C语言&#xff09;4.1 头文件 seqList.h4.2 实现 seqList.c 1. 线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见…

音视频转换软件Permute mac中文板特点介绍

Permute mac是一款Mac平台上的媒体格式转换软件&#xff0c;由Chaotic Software开发。它可以帮助用户快速地将各种音频、视频和图像文件转换成所需格式&#xff0c;并提供了一些常用工具以便于用户进行编辑和处理。 Permute mac软件特点 - 支持大量格式&#xff1a;支持几乎所…

汇编-指针

一个变量如果包含的是另一个变量的地址&#xff0c; 则该变量就称为指针(pointer) 。指针是操作数组和数据结构的极好工具&#xff0c;因为它包含的地址在运行时是可以修改的。 .data arrayB byte 10h, 20h, 30h, 40h ptrB dword arrayB ptrB1 dword OFFSET arrayBarray…

Linux:权限篇 (彻底理清权限逻辑!)

shell命令以及运行原理&#xff1a; Linux严格意义上说的是一个操作系统&#xff0c;我们称之为“核心&#xff08;kernel&#xff09;“ &#xff0c;但我们一般用户&#xff0c;不能直接使用kernel。而是通过kernel的“外壳”程序&#xff0c;也就是所谓的shell&#xff0c;来…