ChatGPT简介及基本概念

点击跳转专栏=>Unity3D特效百例点击跳转专栏=>案例项目实战源码
点击跳转专栏=>游戏脚本-辅助自动化点击跳转专栏=>Android控件全解手册
点击跳转专栏=>Scratch编程案例点击跳转=>软考全系列
点击跳转=>蓝桥系列点击跳转=>ChatGPT和AIGC

👉关于作者

专注于Android/Unity和各种游戏开发技巧,以及各种资源分享(网站、工具、素材、源码、游戏等)
有什么需要欢迎底部卡片私我,获取更多支持,交流让学习不再孤单

在这里插入图片描述

👉实践过程

😜简介

ChatGPT(Generative Pre-trained Transformer)是OpenAI于2022年11月推出的聊天机器人。它建立在OpenAI的GPT-3.5系列大语言模型之上,并结合监督学习和强化学习技术进行了微调。

ChatGPT是一种基于深度学习的自然语言生成模型,是当前自然语言处理领域最具代表性的技术之一。其核心技术包括预训练、Transformer网络和自回归模型。

预训练是ChatGPT的核心技术之一。预训练是指在大规模语料库上对模型进行训练,使其能够自动学习语言的规律和规则。在预训练过程中,ChatGPT使用了海量的无标签文本数据,比如维基百科和新闻文章等。通过这些数据的训练,ChatGPT可以学习到自然语言的语法、句法和语义等信息,从而能够生成自然流畅的语言表达。

ChatGPT作为一种自然语言生成模型,其核心技术包括预训练、Transformer网络和自回归模型。预训练使得模型能够自动学习语言规律和规则,Transformer网络能够有效处理长文本序列,自回归模型能够生成连贯自然的文本内容。这些技术的结合使得ChatGPT成为了自然语言处理领域最具代表性的技术之一,应用于多种领域,为人们提供更加便捷高效的交流和沟通方式。

😜GPT3.5 与 4.0(Plus)区别

虽然ChatGPT和ChatGPTPlus都是人工智能语言模型,但是它们在性能上存在着巨大的差异。ChatGPT Plus具有更强的表达能力、更高的准确性和更强的适应性。下面将从多个方面对它们进行比较:

  1. 参数数量
    ChatGPT Plus具有更多的参数,也就意味着它具有更高的表达能力和更强的拟合能力。ChatGPT的参数数量只有1750万,而ChatGPT Plus的参数数量达到了15亿,相当于ChatGPT的10倍。
  2. 训练数据量
    ChatGPT Plust比ChatGPTl练数据量多了14倍,这就使得ChatGPT Plus在处理各种语言、场景、领域的文本时更加得心应手。ChatGPT Plus的训练数据来自于互联网上的各种语料库,包括维基百科、网页文本、书籍等,因此它的泛化能力更强。
  3. 对话回复质量
    ChatGPT Plus在生成对话回复方面表现更好,它的对话回复更加准确、流畅,回答问题的能力更加全面。在评价对话系统的任务中,ChatGPT Plus相较于ChatGPT获得了更高的分数。
  4. 支持的语言数量
    ChatGPT Plus支持的语言数量比ChatGPT更多。ChatGPTPlus可以支持70多种语言,而ChatGPT只能支持英语。
  5. 响应速度
    ChatGPT Plus需要更多的计算资源和更长的时间来生成回复,因为它的参数数量更多。这意味着,在同样的硬件条件下,ChatGPTPlus的响应速度可能会比ChatGPT更慢。

ChatGPT适用于

● 需要基本的聊天和问答功能的个人用户
● 需要处理英语文本的用户
● 计算资源有限的用户

ChatGPT Plus适用于

● 需要高度准确性和自然度的企业用户,例如客服中心和智能助手。
● 需要处理多语言文本的用户
● 需要处理领域特定语言和术语的用户
● 具有充足计算资源的用户

😜什么是Token

当我们在ChatGPT中处理文本时,文本会被分割成一系列的tokens,这种分割的方式有助于模型更好地理解和处理文本。
一个token可以是一个字符、一个单词或者一个标点符号。

例如,句子 “Hello, how are you?” 可能被分割成以下tokens:[“Hello”, “,”, “how”, “are”, “you”, “?”]
在这个例子中,每个单词和标点符号都被视为一个token。分割成tokens的过程通常会考虑到语言的特点和常见的处理需求。例如,在英语中,常见的缩写词可能会被视为一个单独的token,比如 “I’m” 或者 “don’t”。这样做可以确保模型正确地处理这些常见的缩写词。

当我们将文本输入到ChatGPT模型中时,模型会按照token的顺序逐个处理。模型可以根据前面的tokens来预测下一个token,这样就可以逐步生成输出文本。在模型生成的输出中,我们也会得到一系列的tokens。我们可以将这些tokens重新组合成可读的文本形式,以便呈现给用户。

需要注意的是,tokens的数量会影响到模型的计算成本和响应时间。较长的文本会被分割成更多的tokens,因此在处理文本时需要考虑到tokens的数量。较长的输入文本可能需要更长的处理时间,而较长的输出文本可能会增加响应时间。因此,为了获得更好的性能,我们需要在文本处理中平衡tokens的数量和模型的要求。

😜什么是Prompt

Prompt(提示)是指用户向ChatGPT提供的初始输入或问题,它是用来引导对话的一段文本或问题。
Prompt可以是一个简短的句子、一个问题或者一个完整的对话段落。
在与ChatGPT进行交互时,用户可以使用prompt来指导对话的方向或者提供上下文信息,以便模型能够更好地理解用户的意图并生成相关的回复。
Prompt通常以自然语言形式提供,但也可以是一些特殊的标记或指令。

例如,如果用户想要问ChatGPT关于天气的问题,他们可以使用以下prompt: “今天天气如何?” 或者 “请告诉我今天的天气情况。”

Prompt对于ChatGPT的性能和回复的准确性具有重要影响。
一个清晰、具体和相关的prompt可以帮助ChatGPT产生更有意义的回复。因此,选择和设计合适的prompt是与ChatGPT进行交互的关键一步。

😜对话上下文

上下文(Context)是指在对话中先前的对话历史和相关信息,它提供了对当前对话的背景和语境。
上下文可以包括用户的先前发言、ChatGPT的回复以及任何其他相关的对话内容。
在与ChatGPT进行交互时,上下文对于理解用户的意图以及生成相关的回复非常重要。ChatGPT会根据先前的对话历史和上下文来理解用户的问题,并尝试生成与上下文相关的回复。
上下文可以是一个或多个对话轮次的文本。

例如,在一个对话中,上下文可以是用户的先前问题和ChatGPT的回复。ChatGPT会根据这些上下文信息来生成下一轮的回复。

为了保持对话的连贯性和一致性,通常会将先前的对话历史作为上下文传递给ChatGPT。
这样,ChatGPT就能够更好地理解用户的意图,并生成与之前对话相关的回复。 需要注意的是,上下文的长度可能会受到模型的限制。较长的上下文可能会被截断或忽略,因此在设计上下文时需要注意保持信息的相关性和重要性。

👉其他

📢作者:小空和小芝中的小空
📢转载说明-务必注明来源:https://zhima.blog.csdn.net/
📢这位道友请留步☁️,我观你气度不凡,谈吐间隐隐有王者霸气💚,日后定有一番大作为📝!!!旁边有点赞👍收藏🌟今日传你,点了吧,未来你成功☀️,我分文不取,若不成功⚡️,也好回来找我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146300.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS开发:动态共享包的依赖问题

一、共享包的依赖方式 在需要依赖的模块包目录下oh-package.json5文件中添加依赖: "dependencies": {"ohos/srpaasUI": "file:../../srpaasUI","ohos/srbusiness": "file:../../feature/srbusiness"} 引入之后…

Java源码分析:Guava之不可变集合ImmutableMap的源码分析

原创/朱季谦 一、案例场景 遇到过这样的场景&#xff0c;在定义一个static修饰的Map时&#xff0c;使用了大量的put()方法赋值&#xff0c;就类似这样—— public static final Map<String,String> dayMap new HashMap<>(); static {dayMap.put("Monday&q…

音频类型转换工具-可执行文件exe/dmg制作

朋友车载音乐需要MP3格式&#xff0c;想要个批量转换工具 准备工作 brew install ffmpeg --HEAD或者官网下载安装ffmpeg并配置环境conda install ffmpeg 或者pip install ffmpeg-python 音频类型转换程序.py文件 exe文件在windows下打包&#xff0c;dmg在macos下打包&#…

2023_“数维杯”问题B:棉秸秆热解的催化反应-详细解析含代码

题目翻译&#xff1a; 随着全球对可再生能源需求的不断增加&#xff0c;生物质能作为一种成熟的可再生能源得到了广泛的关注。棉花秸秆作为一种农业废弃物&#xff0c;因其丰富的纤维素、木质素等生物质成分而被视为重要的生物质资源。虽然棉花秸秆的热解可以产生各种形式的可…

001 opencv addWeighted

目录 一、环境 二、addWeighted函数 三、代码演示 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、addWeighted函数 OpenCV中的cv.addWeighted函数是一个用于图像叠加的函数&#xff0c;它可以将两个具有相同尺寸和类型的图像按…

基于JavaWeb+SSM+社区居家养老服务平台—颐养者端微信小程序系统的设计和实现

基于JavaWebSSM社区居家养老服务平台—颐养者端微信小程序系统的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 在复杂社会化网络中&#xff0c;灵活运用社会生活产生的大数据&am…

农户建档管理系统的设计与实现-计算机毕业设计源码20835

摘 要 随着互联网趋势的到来&#xff0c;各行各业都在考虑利用互联网将自己推广出去&#xff0c;最好方式就是建立自己的互联网系统&#xff0c;并对其进行维护和管理。在现实运用中&#xff0c;应用软件的工作规则和开发步骤&#xff0c;采用Java技术建设农户建档管理系统。 本…

python时间变化与字符串替换技术及读JSON文件等实践笔记

1. 需求描述 根据预测出结果发出指令的秒级时间&#xff0c;使用时间戳&#xff0c;也就是设定时间&#xff08;字符串&#xff09;转为数字时间戳。时间计算转换过程中&#xff0c;出现单个整数&#xff08;例如8点&#xff09;&#xff0c;按字符串格式补齐两位“08”。字符…

iOS项目集成RN(0)

iOS原有项目集成RN 环境安装RN环境搭建Node & Watchman 安装 创建新应用iOS项目集成RN如果没有iOS项目&#xff0c;新建一个 swift&#xff0c; storyboard项目&#xff0c; 名字&#xff1a;RNTest新建一个 RNDemo目录&#xff0c;一个iOS子目录&#xff0c; 把iOS相关的拷…

波卡三季度报告:已实现白皮书目标,异步支持与应用链技术推进

作者&#xff1a;Nicholas Garcia&#xff0c;Messari 研究分析师 编译&#xff1a;OneBlock 来源&#xff1a;https://messari.io/report/state-of-polkadot-q3-2023 知名分析平台 Messari 发布了 Polkadot 2023 年第三季度报告&#xff0c;分析了波卡的关键数据指标以及网…

挑战视觉边界,探索图形验证码背后的黑科技

在日常生活中&#xff0c;我们登录网站或者其他平台时&#xff0c;在填写完账号密码之后&#xff0c;还会让我们填写4或6位的数字或者英文字母等&#xff0c;填写正确才能请求登录。这个其实是防止某一个特定注册用户用特定程序暴力破解方式进行不断的登陆尝试&#xff0c;如下…

Java虚拟机运行时数据区结构详解

Java虚拟机运行时数据区结构如图所示 程序计数器 程序计数器&#xff08;Program Counter Register&#xff09;是一块较小的内存空间&#xff0c;它可以看作是当前线程所执行的字节码的行号指示器。 多线程切换时&#xff0c;为了能恢复到正确的执行位置&#xff0c;每条线程…

基于DE10-Standard Cyclone V SoC FPGA学习---开发板简介

基于DE10-Standard Cyclone V SoC FPGA学习---开发板简介 简介产品规格基于 ARM 的 HPS配置与调试存储器件通讯连接头显示器音频视频输入模数转换器开关、按钮、指示器传感器电源 DE10-Standard 开发板系统框图Connect HTG 组件配置设计资源其他资源 简介 开发板资料 见 DE10-…

【漏洞复现】NUUO摄像头存在远程命令执行漏洞

漏洞描述 NUUO摄像头是中国台湾NUUO公司旗下的一款网络视频记录器&#xff0c;该设备存在远程命令执行漏洞&#xff0c;攻击者可利用该漏洞执行任意命令&#xff0c;进而获取服务器的权限。 免责声明 技术文章仅供参考&#xff0c;任何个人和组织使用网络应当遵守宪法法律&…

Vellum —— Constraint 约束

目录 Stretch Bend Pin Drag 解算器对DOP外节点的约束属性&#xff0c;只会读取起始帧的值&#xff1b; Stretch 保持点间的初始距离&#xff1b; Stiffness 越高的stiffness&#xff0c;就需要越多的迭代来收敛&#xff0c;如constraint iterations或substeps(子步会更好)…

【Linux】:进程间通信

进程间通信 一.基本概念二.简单的通信-管道1.建立通信信道2.通信接口 一.基本概念 是什么 两个或多个进程实现数据层面的交互。 因为进程独立性的存在&#xff0c;导致进程间的通信成本比较高。 为什么 因为我们有多进程协同的需求。 怎么办 a.进程间通信的本质:必须让不…

无线物理层安全大作业

这个标题很帅 Beamforming Optimization for Physical Layer Security in MISO Wireless NetworksProblem Stateme![在这里插入图片描述](https://img-blog.csdnimg.cn/58ebb0df787c4e23b0c7be4189ebc322.png) Beamforming Optimization for Physical Layer Security in MISO W…

Android 屏幕适配

目录 一、为什么要适配 二、几个重要的概念 2.1 屏幕尺寸 2.2 屏幕分辨率 2.3 屏幕像素密度 2.4 屏幕尺寸、分辨率、像素密度三者关系 三、常用单位 3.1 密度无关像素(dp) 3.2 独立比例像素&#xff08;sp&#xff09; 3.3 dp与px的转换 四、解决方案 4.1 今日头条…

python_主动调用其他类的成员

# 主动调用其他类的成员 # 方式一: class Base(object):def f1(self):print("5个功能") class Foo(object):def f1(self):print("3个功能")# Base.实例方法(自己传self),与继承无关Base.f1(self)obj Foo() obj.f1()print("#"*20)# 方式二:按照类…

Netty+SpringBoot 打造一个 TCP 长连接通讯方案

项目背景 最近公司某物联网项目需要使用socket长连接进行消息通讯&#xff0c;捣鼓了一版代码上线&#xff0c;结果BUG不断&#xff0c;本猿寝食难安&#xff0c;于是求助度娘&#xff0c;数日未眠项目终于平稳运行了&#xff0c;本着开源共享的精神&#xff0c;本猿把项目代码…