2023年亚太杯数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录

    • 赛题思路
    • 算法介绍
    • FP树表示法
    • 构建FP树
    • 实现代码
  • 建模资料

赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145869.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C/C++中,char类型到底是有符号还是无符号的

对于这个问题&#xff0c;有些功底不深的同学可能会回答“char 类型是有符号类型”&#xff0c;理由是省略 signed 是可以的。 而正确答案是&#xff1a;C99标准并未指定 char 类型是有符号还是无符号&#xff0c;这取决实现&#xff08;编译器和硬件平台&#xff09;。具体可…

Linux命令——ss

ss 是 Socket Statistics 的缩写。ss 命令可以用来获取 socket 统计信息&#xff0c;它显示的内容和 netstat 类似。但 ss 的优势在于它能够显示更多更详细的有关 TCP 和连接状态的信息&#xff0c;而且比 netstat 更快。 格式 ss [参数] 常用参数&#xff1a; -n 不解析服务…

操作系统:输入输出管理(二)磁盘调度算法

一战成硕 5.3 磁盘固态硬盘5.3.1 磁盘5.3.2 磁盘的管理5.3.3 磁盘调度算法 5.3 磁盘固态硬盘 5.3.1 磁盘 磁盘是表面涂有磁性物质的物理盘片&#xff0c;通过一个称为磁头的导体线圈从磁盘存取数据。在读写操作中&#xff0c;磁头固定&#xff0c;磁盘在下面高速旋转。磁盘盘…

第四代智能井盖传感器,万宾科技助力城市安全

在迈向更为智能化、相互联系更为紧密的城市发展过程中&#xff0c;智能创新产品无疑扮演了一种重要的角色。智能井盖传感器作为新型科学技术产物&#xff0c;不仅解决传统井盖管理难的问题&#xff0c;也让城市变得更加安全美好&#xff0c;是城市生命线的一层重要保障。这些平…

Axelar、J.P.Morgan Onyx、Apollo 完成概念验证,向跨区块链自动化投资领域探索

J.P.Morgan Onyx、Apollo、Axelar、Oasis Pro 以及 Provenance Block Chain 展开合作&#xff0c;共同进行互操作性概念验证&#xff08;Proof-of-Concept&#xff0c;PoC)。 新加坡 — Axelar Inc.、Oasis Pro 、Provenance Blockchain 与 J.P.Morgan Onyx 以及 Apollo 通过新…

人工智能引领环境保护的新浪潮:技术应用及其影响

在全球范围内&#xff0c;环境保护已经成为一个迫切的话题。随着人工智能技术的发展&#xff0c;它开始在环境保护领域扮演越来越重要的角色。AI不仅能够帮助更有效地监测环境变化&#xff0c;还能提出解决方案来应对环境问题。 污染监测与控制&#xff1a; AI系统可以分析来自…

面试求职者

顾x文 SQLite3数据的使用实现了多线程UDP数据收发功能Qt多线程的同步和异步熟悉GDB的调试了解Mysql的性能优化熟悉常见算法&#xff1a;快速排序、希尔排序、归并排序基于Nginx C Mysql Python ICE开发熟练Boost库负责搭建后台服务端&#xff0c;使用Nginx展示前端界面&am…

hadoop 大数据环境配置 配置jdk, hadoop环境变量 配置centos环境变量 hadoop(五)

1. 遗漏一步配置系统环境变量&#xff0c;下面是步骤&#xff0c;别忘输入更新系统环境命令 2. 将下载好得压缩包上传至服务器&#xff1a; /opt/module 解压缩文件存放地址 /opt/software 压缩包地址 3. 配置环境变量&#xff1a; 在/etc/profile.d 文件夹下创建shell文件 …

Python---列表 集合 字典 推导式(本文以 列表 为主)

推导式&#xff1a; 推导式comprehensions&#xff08;又称解析式&#xff09;&#xff0c;是Python的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列&#xff08;一个有规律的列表或控制一个有规律列表&#xff09;的结构体。 共有三种推导&#xff1a;列表…

面试经典(4/150)删除有序数组中的重复项 II

面试经典&#xff08;4/150&#xff09;删除有序数组中的重复项 II 给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c; 返回删除后数组的新长度。不要使用额外的数组空间&#xff0c;你必须在 原…

【带头学C++】----- 六、结构体 ---- 6.7 结构体的对齐规则

6.7 结构体的对齐规则 6.7.1 知识点引入 6.7.2 结构体自动对齐规则 1、确定分配单位(一行分配多少字节) 结构体中最大的基本类型长度决定 2、确定成员的偏移量 成员偏移量成员自身类型的整数倍 需要根据你所在平台的位数&#xff0c;32位和64为类型大小不一样。cpu一次读取…

前段-用面向对象的方式开发一个水管小鸟的游戏

首先准备好各类空文件 index.js css html 和图片 图片是下面这些&#xff0c;如果没有的可在这里下载 2 开发开始 好了&#xff0c;基础准备工作完毕&#xff0c;开发开始&#xff0c; 首先&#xff0c;先把天空&#xff0c;大地&#xff0c;小鸟的盒子准备好&#xff0c;并…

Android studio配置Flutter开发环境报错问题解决

博主前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住也分享一下给大家 &#x1f449;点击跳转到教程 报错问题截图 报错原因已经给出&#xff1a; You need Java 11 or higher to build your app with this version of G…

【智能家居】4、智能家居框架设计和代码文件工程建立

目录 一、智能家居项目框架 二、智能家居工厂模式示意 三、代码文件工程建立 SourceInsight创建新工程步骤 一、智能家居项目框架 二、智能家居工厂模式示意 三、代码文件工程建立 创建一个名为si的文件夹用于保存SourceInsight生成的文件信息&#xff0c;然后在SourceInsig…

DocCMS keyword SQL注入漏洞复现 [附POC]

文章目录 DocCMS keyword SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 DocCMS keyword SQL注入漏洞复现 [附POC] 0x01 前言 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测…

【ES6.0】- 扩展运算符(...)

【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…

【超好用的工具库】hutool-all工具库的基本使用

简介&#xff08;可不看&#xff09;&#xff1a; hutool-all是一个Java工具库&#xff0c;提供了许多实用的工具类和方法&#xff0c;用于简化Java开发过程中的常见任务。它包含了各种模块&#xff0c;涵盖了字符串操作、日期时间处理、加密解密、文件操作、网络通信、图片处…

2311rust到27版本更新

1.23 从Rust1.0开始,有叫AsciiExt的特征来提供u8,char,[u8]和str上的ASCII相关功能.要使用它,需要如下编写代码: use std::ascii::AsciiExt; let ascii a; let non_ascii ; let int_ascii 97; assert!(ascii.is_ascii()); assert!(!non_ascii.is_ascii()); assert!(int_a…

C#多线程Thread、Task

在C#中&#xff0c;线程可以用于完成需要耗费较长时间的操作&#xff0c;而不会阻塞用户界面。一个程序可以有多个线程&#xff0c;每个线程可以并行执行代码。 在C#中&#xff0c;可以使用System.Threading.Thread类来创建和控制线程&#xff0c;使用System.Threading.Mutex类…

javascript二维数组(22)JavaScript 中的数据类型有哪些?如何进行类型转换?

在 JavaScript 中&#xff0c;数据类型主要分为两种&#xff1a;基本类型和对象类型。 基本类型是指原始数据类型&#xff0c;包括&#xff1a; Number&#xff1a;数值型。可以是整数或浮点数。String&#xff1a;字符串型。用于表示文本数据。Boolean&#xff1a;布尔型。包…