线性代数理解笔记

一.向量引入:

向量:只由大小和方向决定,不由位置决定。

二.向量加减法

向量的加法是首尾相连,减法是尾尾相连。

而向量v+向量w为平行四边形主对角线。

向量v-向量w为平行四边形副对角线。

2.向量内积点乘(内积)

内积表示的是cos夹角的大小,如果内积大于0,表示两向量的夹角小于90度,等于0两向量夹角为90度,小于0夹角大于90度。

3.叉乘(外积)

叉乘的几何意义是平行四边形的面积。

三.线性相关理解

有一组向量,a,b,c。有任意系数,x,y,z。a*x+b*y+c*z=0;如果a,b,c三个向量线性无关,那么只有当x=y=z=0时结果才为0。也说明三个向量,两两必有夹角。(不共线)

如果线性相关,那么a,b,c,中,至少有一个与另一个共线,夹角为0。也就是说某一个向量可以拉伸成为另一个向量。

n个线性无关的向量可以通过线性组合张成一个n维空间。

在几何上:

线性相关:组向量中有多余向量,把它去掉后不影响张成空间。

线性无关:没多余向量,去掉任何一个都会影响原有的张成空间,每一个向量都代表了一个新的维度。

例如我们二维平面----->直角坐标系。标准正交基时两两垂直、长度为1的向量可以张成。(1,0)代表x轴方向,(0,1)代表y轴方向。分别用坐标表示[(1,0)T,(0,1)T]。假如我们要直角坐标系中向量(2,3)。只需要改变这个正交基向量组的系数就可以了。2*(1,0)+3(0,1)=(2,0)+(0,3)=(2,3)。

表示向量(2,3)在x轴方向走了2步。y轴方向走了3步。

三.矩阵:

每一个向量构成矩阵的列向量。

上边我们用了正交基向量((1,0),(0,1))获得向量(2,3),相当于拉伸了正交基向量。

而这个用矩阵来描述就是进行了线性变换。[(1,0)T,(0,1)T][2,3]=[2,3],表示由正交基变量组成的矩阵与系数矩阵[2,3]相乘。它的几何意义是向量(2,3)在由正交基坐标系下的映射。如果不是正交基所组成的矩阵,而是别的,[2,3]在别的基构成的坐标系中又会是别的点。而我们如果要把别的基的点转到直角坐标系下,那么就要乘该矩阵的逆矩阵。一个矩阵乘它的逆矩阵等于单位矩阵。例如我们[(0,1)T,(1,1)T][x,y]=[2,3],在基[0,1][1,1]下,在平面直角坐标系中的向量(x,y),线性变换在此坐标系下面是[2,3],如果我们要求(x,y),就要变到直角坐标系下。只需要左乘[(0,1)T,(1,1)T]-1(逆矩阵),那么就是E[x,y]=[(0,1)T,(1,1)T]-1[2,3]。E为单位矩阵,也是直角坐标系。

:矩阵(向量组)可以张成空间的维度,用r表示。

奇异矩阵:行列式为0的矩阵,也就是维度变小的矩阵。不满秩的矩阵。但我们不知道维度变得是多小,比如由三维到二维是小,从三围到一维也是小。

非奇异矩阵:行列式不为0的矩阵。满秩矩阵,维度不变的矩阵。

逆矩阵:如果矩阵A,B,AB=BA,那么说明A可逆,写作A^-1。

下面是矩阵的一下运算规则

求逆矩阵:

所以我们知道,矩阵可逆的充要条件是矩阵行列式不为0。

四.行列式

几何意义:二维中,是由基围成的平行四边形面积。

在三维中,是由基围成的平行六面体体积。

如果行列式为0,就相当于没有面积,也就是说被压缩到更小维度,如直角坐标系维度到一条坐标轴。

所以,我们用矩阵的秩来描述就是,满秩矩阵<=>行列式不为0,不满秩矩阵,<=>行列式为0。秩是用来表示线性无关的向量数量,不满秩,就相当于没围起来,就没有面积,行列式为0。

下面是行列式的性质和运算规则。

余子式和代数余子式

五.次线性方程组的解

用矩阵的线性变换求解方程组

初等矩阵:对单位矩阵进行一次初等行变换所得到的矩阵。

初等行变换实际上就是初等矩阵与矩阵间的乘法。

下面涉及高等数学微分方程的内容:

特征值求法

一个矩阵乘一个特征向量的矩阵,等于特征值(标量)乘特征向量的矩阵。

为了更好表示,我们移项,让特征值乘单位矩阵。因为等号右边为0,说明空间被压缩。

特征向量的特点是经过变换后会停留在原来的直线上。相当于被拉伸或者缩减多少倍。

被拉伸或缩减多少倍就是特征值

粗鄙理解:假设v在直角坐标系E下停留在x轴,用矩阵乘法表示为E*v,那么假设A也代表一个不同于直角坐标系的坐标系,那么在A*v的情况下,如果v还停留在x轴,但是只是被拉伸或是压缩,那么我们就说v是特征向量。

特征向量不为0,那么只能它的左边那部分为0。

于是转化成求解左边为0的情况。

下面A为特征向量矩阵。

六.二次型

有交叉项是斜的,没交叉项则是正的圆。标准化就是将斜的摆正的过程。

以上截图来自于B站小宇师兄聊考研。作者去学习并有一些自己的理解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143764.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java --- JVM之StringTable

目录 一、String的基本特性 二、String的内存分配 2.1、String内存分布图 三、字符串拼接操作 3.1、字符串拼接操作底层原理 3.2、拼接操作与append操作效率对比 四、intern()方法 4.1、intern()效率 五、StringTable的垃圾回收 一、String的基本特性 1、String字符…

MR外包团队:MR、XR混合现实技术应用于游戏、培训,心理咨询、教育成为一种创新的各行业MR、XR形式!

随着VR、AR、XR、MR混合现实等技术逐渐应用于游戏开发、心理咨询、培训、教育各个领域&#xff0c;为教育、培训、心理咨询等行业带来了全新的可能性。MR、XR游戏开发、心理咨询是利用虚拟现实技术模拟真实场景&#xff0c;让学生身临其境地参与学习和体验&#xff0c;从而提高…

为什么UI自动化难做?—— 关于Selenium UI自动化的思考

在快速迭代的产品、团队中&#xff0c;UI自动化通常是一件看似美好&#xff0c;实际“鸡肋”&#xff08;甚至绝大部分连鸡肋都算不上&#xff09;的工具。原因不外乎以下几点&#xff1a; 1 效果有限 通常只是听说过&#xff0c;就想去搞UI自动化的团队&#xff0c;心里都认…

SpringSecurity6从入门到上天系列第六篇:解决这个问题为什么在引入SpringSecurity之后所有的请求都需要先做登录认证才可以进行访问呢

文章目录 问题引入 1&#xff1a;问题阐述 2&#xff1a;问题分析 一&#xff1a;从SpringBoot的自动装配 1&#xff1a;SpringBootApplication介绍 2&#xff1a;自动装配的核心方法 3&#xff1a;核心方法的调用路径 4&#xff1a;SpringSecurity核心配置 5&#xf…

总结1057

考研倒计38天 极限冲刺day1 今日共计学习13h33m&#xff0c;为了能走出备考的低谷阶段&#xff0c;来一场与自我的较量。在尽可能保证效率的情况下&#xff0c;玩命干。考研这件事&#xff0c;从来不是因为看到了希望才去努力&#xff0c;而是玩命努力后才看到希望。

蒙HarmonyOS从零实现类微信app效果第二篇,我的+发现页面实现

本着不拖更的原则&#xff0c;今天上新了&#xff0c;今天实现了类微信app的发现页和我的页面。先看效果。 效果是不是看着还不错。其实这两个页面功能实现还是比较简单的&#xff0c;接下来还是老规矩&#xff0c;先进行页面的拆分和代码实现&#xff0c;然后进行相关我认为比…

2023年亚太杯APMCM数学建模大赛数据分析题MySQL的使用

2023年亚太杯APMCM数学建模大赛 以2022年C题全球变暖数据为例 数据分析&#xff1a; 以2022年亚太杯数学建模C题为例&#xff0c;首先在navicat建数据库然后右键“表”&#xff0c;单击“导入向导”&#xff0c;选择对应的数据格式及字符集进行数据导入 导入之后&#xff0c…

c# 字符串转化成语音合成,System.Speech

C# 语音合成可以使用 System.Speech.Synthesis 命名空间中的 SpeechSynthesizer 类来实现。SpeechSynthesizer 类提供了一系列方法和属性&#xff0c;可以用来控制语音合成的过程&#xff0c;包括设置语音、音调、语速等。 下面是一个简单的示例&#xff0c;用来演示如何使用 …

[量子计算与量子信息] 2.1 线性代数

2.1 线性代数 符号对照表 量子力学中&#xff0c;向量使用 ∣ ψ ⟩ \ket \psi ∣ψ⟩ (ket)来表示&#xff0c;可以理解为一个列向量。其对偶向量为 ⟨ ψ ∣ \bra \psi ⟨ψ∣ &#xff0c;可以理解为行向量。 向量空间中零向量直接用 0 0 0 表示&#xff0c; ∣ 0 ⟩ \…

卸载本地开发环境,拥抱容器化开发

以前在公司的时候&#xff0c;使用同事准备的容器化环境&#xff0c;直接在 Docker 内进行开发&#xff0c;爽歪歪呀。也是在那时了解了容器化开发的知识&#xff0c;可惜了&#xff0c;现在用不到那种环境了。所以打算自己在本地也整一个个人的开发环境&#xff0c;不过因为我…

S-Clustr(影子集群) 重磅更新!黑入工业PLC设备!

公告 项目地址:https://github.com/MartinxMax/S-Clustr 更新预告内容进度SIEMENS S7-200 SMART远程控制进行中 开发人员Blog联系方式提交时间提交内容授权情况ASH_HHhttps://blog.csdn.net/m0_53711047/article/details/133691537?spm1001.2014.3001.5502匿名2023-10-16 2…

USB复合设备构建CDC+HID鼠标键盘套装

最近需要做一个小工具&#xff0c;要用到USB CDCHID设备。又重新研究了一下USB协议和STM32的USB驱动库&#xff0c;也踩了不少坑&#xff0c;因此把代码修改过程记录一下。 开发环境&#xff1a; ST-LINK v2 STM32H743开发板 PC windows 11 cubeMX v6.9.2 cubeIDE v1.13.2 cub…

Feature Pyramid Networks for Object Detection(2017.4)

文章目录 Abstract1. Introduction3. Feature Pyramid NetworksBottom-up pathwayTop-down pathway and lateral connections 7. Conclusion FPN Abstract 特征金字塔是识别系统中检测不同尺度物体的基本组成部分。但最近的深度学习对象检测器避免了金字塔表示&#xff0c;部分…

VS Code画流程图:draw.io插件

文章目录 简介快捷键 简介 Draw.io是著名的流程图绘制软件&#xff0c;开源免费&#xff0c;对标Visio&#xff0c;用过的都说好。而且除了提供常规的桌面软件之外&#xff0c;直接访问draw.io就可以在线使用&#xff0c;堪称百分之百跨平台&#xff0c;便捷性直接拉满。 那么…

重生之我是一名程序员 31

大家晚上好&#xff01;前面给大家分享了指针与数组的知识&#xff0c;所以今天要给大家分享的知识是——指针数组 相信大家在这里都会有疑问&#xff0c;指针数组是指针还是数组&#xff1f; 在这我们可以类⽐⼀下其他类型的数组&#xff0c;比如整型数组是存放整型的数组&am…

python科研绘图:绘制X-bar图

目录 1.X-bar 图的基本概念 2.X-bar 图的绘制过程 3.X-bar 图的优势 4.X-bar 图的绘制 1.X-bar 图的基本概念 X-bar控制图是一种统计工具&#xff0c;用于监控和控制生产过程中的质量变量。它是过程能力分析和统计过程控制&#xff08;SPC&#xff0c;Statistical Process…

SystemVerilog学习 (5)——接口

一、概述 验证一个设计需要经过几个步骤&#xff1a; 生成输入激励捕获输出响应决定对错和衡量进度 但是&#xff0c;我们首先需要一个合适的测试平台&#xff0c;并将它连接到设计上。 测试平台包裹着设计,发送激励并且捕获设计的输出。测试平台组成了设计周围的“真实世界”,…

Python---数据序列中的公共方法

公共方法就是 支持大部分 数据 序列。 常见公共方法---简单 运算符描述支持的容器类型合并字符串、列表、元组*复制字符串、列表、元组in元素是否存在字符串、列表、元组、字典not in元素是否不存在字符串、列表、元组、字典 案例&#xff1a; 合并 代码&#xff1a; # …

【Nginx】nginx | 微信小程序验证域名配置

【Nginx】nginx | 微信小程序验证域名配置 一、说明二、域名管理 一、说明 小程序需要添加头条的功能&#xff0c;内容涉及到富文本内容显示图片资源存储在minio中&#xff0c;域名访问。微信小程序需要验证才能显示。 二、域名管理 服务器是阿里云&#xff0c;用的宝塔管理…

【探索Linux】—— 强大的命令行工具 P.15(进程间通信 —— system V共享内存)

阅读导航 引言一、system V的概念二、共享内存(1) 概念(2) 共享内存示意图(3) 共享内存数据结构 三、共享内存的使用1. 共享内存的使用步骤&#xff08;1&#xff09;包含头文件&#xff08;2&#xff09;获取键值&#xff08;ftok函数&#xff09;&#xff08;3&#xff09;创…