acwing算法基础之搜索与图论--匈牙利算法求二分图的最大匹配数

目录

  • 1 基础知识
  • 2 模板
  • 3 工程化

1 基础知识

二分图中的最大匹配数:从二分图中选择一些边(这些边连接集合A和集合B,集合A中结点数目为n1,集合B中结点数目为n2),设为集合S,其中任意两条边不共用一个结点。求集合S的最大元素数目,即二分图中的最大匹配数。

匈牙利算法的关键步骤:

  1. 初始化匹配数组match[1~n2] = 0。其中match[b] = a,表示集合B中的结点b匹配了集合A中的结点a。
  2. 遍历集合A中的每一个结点a:初始化状态数组st[1~n2] = false,其中st[b] = false表示集合B中的结点b没有被访问。然后,find(x),如果它返回true,那么答案加1。
bool find(int a) {//a为集合A中的结点for (auto b : g[x]) {if (!st[b]) {//如果结点b没有被访问st[b] = true;if (match[b] == 0 || find(match[b])) { //如果结点b没有被匹配,或者结点b匹配了的结点可以找到新的match[b] = a;return true;}}}return false;
}
  1. 最终返回答案,即为该二分图的最大匹配数。

2 模板

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过bool find(int x)
{for (int i = h[x]; i != -1; i = ne[i]){int j = e[i];if (!st[j]){st[j] = true;if (match[j] == 0 || find(match[j])){match[j] = x;return true;}}}return false;
}// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{memset(st, false, sizeof st);if (find(i)) res ++ ;
}

3 工程化

题目1:求二分图的最大匹配。

#include <iostream>
#include <cstring>
#include <vector>using namespace std;const int N = 510;
int n1, n2, m;
vector<vector<int>> g(N);
int match[N];
bool st[N];bool find(int a) {for (auto b : g[a]) {if (!st[b]) {st[b] = true;if (match[b] == 0 || find(match[b])) {match[b] = a;return true;}}}return false;
}int main() {cin >> n1 >> n2 >> m;int a, b;while (m--) {cin >> a >> b;g[a].emplace_back(b);}int res = 0;for (int i = 1; i <= n1; ++i) {memset(st, 0, sizeof st);if (find(i)) res++;}cout << res << endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143042.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django框架FAQ

文章目录 问题1:Django数据库恢复问题2:null和blank的区别3.报错 django.db.utils.IntegrityError: (1062, “Duplicate entry ‘‘ for key ‘mobile‘“)4.报错 Refused to display ‘url‘ in a frame because it set ‘X-Frame-Options‘ to deny5.报错 RuntimeError: cryp…

NovelD: A Simple yet Effective Exploration Criterion论文笔记

NovelD:一种简单而有效的探索准则 1、Motivation 针对稀疏奖励环境下的智能体探索问题&#xff0c;许多工作中采用各种内在奖励(Intrinsic Reward)设计来指导困难探索环境中的探索 &#xff0c;例如&#xff1a; ICM&#xff1a;基于前向动力学模型的好奇心驱动探索RND&…

CCF编程能力等级认证GESP—C++1级—样题1

CCF编程能力等级认证GESP—C1级—样题1 单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09;判断题&#xff08;每题 2 分&#xff0c;共 20 分&#xff09;编程题 (每题 25 分&#xff0c;共 50 分)第一题第二题 参考答案单选题判断题编程题1编程题2 单选题&#xf…

Linux文件系统

1.基础IO &#xff08;1&#xff09;文件操作 在C语言中&#xff0c;用来进行文件操作的函数有很多&#xff0c;比如&#xff1a; 所谓文件操作&#xff0c;简而言之就是通过语言层面向系统层面进行函数调用&#xff0c;命令操作系统为在磁盘上为其创建文件&#xff0c;那么这些…

企业级源代码安全审计咨询案例

代码审计网专家服务团队&#xff0c;除了提供网络、现场的源代码审计服务外&#xff0c;为了帮助企业建立代码审计服务平台、代码扫描基线、安全和质量编码规范、制度流程&#xff0c;打通企业研发的各个管理环节&#xff0c;实现自动化等企业级源代码安全审计咨询服务。 企业要…

react Antd3以下实现年份选择器 YearPicker

项目antd版本低&#xff0c;没有直接可使用的年份选择器&#xff0c;参考此篇&#xff08;使用antd实现年份选择器控件 - 掘金&#xff09; 一开始在state里设置了time&#xff1a; this.state {isopen: false,time: null } 在类似onChange事件里this.setState({time: valu…

一文搞懂Transformer

近期Transformer系列模型的出现&#xff0c;增加了CV领域的多样性。但是Transformer这一不同领域的模型对学习者来说需要一个细致的学习过程.下面就是本菜鸟总结学习路线。 Transformer是基于attention机制。而attention机制又在Encoder、Decode中。本篇博客将从Attention->…

短视频短剧小程序系统:创新的内容传播与互动体验

随着移动互联网的普及和用户消费习惯的改变&#xff0c;短视频短剧小程序系统逐渐成为内容传播和互动体验的新宠。这种小程序系统以短视频和短剧为主要内容形式&#xff0c;通过创新的内容传播和互动体验&#xff0c;为用户提供了一种全新的娱乐和社交方式。本文将详细介绍短视…

C# Onnx 轻量实时的M-LSD直线检测

目录 介绍 效果 效果1 效果2 效果3 效果4 模型信息 项目 代码 下载 其他 介绍 github地址&#xff1a;https://github.com/navervision/mlsd M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-…

使用 maven 自动将源码打包并发布

maven-source-plugin 作用&#xff1a; 在构建过程中将项目的源代码进行打包&#xff0c;并作为一个jar文件附着在主构件上&#xff0c;在 pom.xml 中添加如下内容&#xff0c;使用 maven 生成 jar 的同时生成 sources 包 在 pom 中配置如下&#xff1a; <build><p…

Hive 查询优化

Hive 查询优化 -- 本地 set mapreduce.framework.namelocal; set hive.exec.mode.local.autotrue; set mapperd.job.trackerlocal; -- yarn set mapreduce.framework.nameyarn; set hive.exec.mode.local.autofalse; set mapperd.job.trackeryarn-- 向量模式 set hive.vectori…

最小二乘法及参数辨识

文章目录 一、最小二乘法1.1 定义1.2 SISO系统运用最小二乘估计进行辨识1.3 几何解释1.4 最小二乘法性质 二、加权最小二乘法三、递推最小二乘法四、增广最小二乘法 一、最小二乘法 1.1 定义 1974年高斯提出的最小二乘法的基本原理是未知量的最可能值是使各项实际观测值和计算…

[数据结构]—带头双向循环链表——超详解

&#x1f493;作者简介&#x1f389;&#xff1a;在校大二迷茫大学生 &#x1f496;个人主页&#x1f389;&#xff1a;小李很执着 &#x1f497;系列专栏&#x1f389;&#xff1a;数据结构 每日分享✨&#xff1a;旅行是为了迷路&#xff0c;迷路是为了遇上美好❣️❣️❣️ …

XoT:一种新的大语言模型的提示技术

这是微软在11月最新发布的一篇论文&#xff0c;题为“Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation”&#xff0c;介绍了一种名为XOT的提示技术&#xff0c;它增强了像GPT-3和GPT-4这样的大型语言模型(llm)解决复杂问题的潜力。 当前提…

Spring底层原理学习笔记--第九讲--(aop之ajc增强)

AOP实现之ajc编译器 AOP的另一种实现及原理 A10Application.java package com.lucifer.itheima.a10;import com.lucifer.itheima.a10.service.MyService; import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframewor…

如何让组织的KPI成为敏捷转型的推手而不是杀手 | IDCF

作者&#xff1a;IDCF学员 伍雪锋 某知名通讯公司首席敏捷教练&#xff0c;DevOps布道者。2020年到2021年小100人团队从0-1初步完成敏捷转型&#xff0c;专注传统制造业的IT转型&#xff0c;研发效能提升。 一、前言 在公司我们常常听见这么一个流传的故事&#xff0c;只要…

HCIA-经典综合实验(二)

经典综合实验&#xff08;二&#xff09; 实验拓扑配置步骤配置Eth-Trunk聚合链路第一步 配置二层VLAN第二步 配置MSTP生成树第三步 配置相关IP地址第四步 配置DHCP及DHCP中继第五步 配置三层的网关冗余协议 VRRP及OSPF第六步 配置静态路由,NAT地址转换及其他配置完善 配置验证…

Linux Ubuntu系统中添加磁盘

在学习与训练linux系统的磁盘概念、文件系统等&#xff0c;需要增加磁盘、扩展现有磁盘容量等&#xff0c;对于如何添加新的磁盘&#xff0c;我们在“Linux centos系统中添加磁盘”中对centos7/8版本中如何添加、查看、删除等&#xff0c;作了介绍&#xff0c;而对Ubuntu版本中…

解决k8s通过traefik暴露域名失败并报错:Connection Refused的问题

我敢说本篇文章是网上为数不多的解决traefik暴露域名失败问题的正确文章。 我看了网上太多讲述traefik夸夸其谈的文章了&#xff0c;包含一大堆复制粘贴的水文和还有什么所谓“阿里技术专家”的文章&#xff0c;讲的全都是错的&#xff01;基本没有一个能说到点子上去&#xf…

Python之函数进阶-递归函数

Python之函数进阶-递归函数 递归 函数直接或者间接调用自身就是 递归递归需要有边界条件、递归前进段、递归返回段递归一定要有边界条件当边界条件不满足的时候&#xff0c;递归前进当边界条件满足的时候&#xff0c;递归返回 递归要求 递归一定要有退出条件&#xff0c;递…