AI歌姬,C位出道,基于PaddleHub/Diffsinger实现音频歌声合成操作(Python3.10)

懂乐理的音乐专业人士可以通过写乐谱并通过乐器演奏来展示他们的音乐创意和构思,但不识谱的素人如果也想跨界玩儿音乐,那么门槛儿就有点高了。但随着人工智能技术的快速迭代,现在任何一个人都可以成为“创作型歌手”,即自主创作并且让AI进行演唱,极大地降低了音乐制作的门槛。

本次我们基于PaddleHub和Diffsinger实现音频歌声合成操作,魔改歌曲《学猫叫》。

配置PaddleHub

首先确保本地就已经安装好了百度的PaddlePaddle深度学习框架,随后输入命令安装PaddleHub库:

pip install paddlehub@2.4.0

PaddleHub是基于PaddlePaddle生态下的预训练模型,旨在为开发者提供丰富的、高质量的、直接可用的预训练模型,也就是说语音模型我们不需要单独训练,直接使用paddlehub提供的模型进行推理即可,注意这里版本为最新的2.4.0。

安装成功之后,配置环境变量:

由于PaddleHub会把音色模型下载到本地,如果不配置环境变量,默认会下载到系统的C盘,所以这里单独设置为E盘。

随后需要将Win11的cmd编码设置为utf-8:

首先找到设置页面  
搜索地区,并点击更改国家或地区  
选择管理语言设置  
选择更改系统区域设置  
勾选Beta版: 使用Unicode UTF-8 提供全球语言支持,重启生效。

如果不设置utf-8编码,PaddleHub会因为乱码问题报错。

接着安装diffsinger:

hub install diffsinger

随后在终端运行代码:

import paddlehub as hub  module = hub.Module(name="diffsinger")

这里指定diffsinger的模型库,程序返回:

C:\Program Files\Python310\lib\site-packages\_distutils_hack\__init__.py:33: UserWarning: Setuptools is replacing distutils.  warnings.warn("Setuptools is replacing distutils.")  
| Hparams chains:  ['configs/config_base.yaml', 'configs/tts/base.yaml', 'configs/tts/fs2.yaml', 'configs/tts/base_zh.yaml', 'configs/singing/base.yaml', 'usr\\configs\\base.yaml', 'usr/configs/popcs_ds_beta6.yaml', 'usr/configs/midi/cascade/opencs/opencpop_statis.yaml', 'model\\config.yaml']  
| Hparams:   
K_step: 100, accumulate_grad_batches: 1, audio_num_mel_bins: 80, audio_sample_rate: 24000, base_config: ['usr/configs/popcs_ds_beta6.yaml', 'usr/configs/midi/cascade/opencs/opencpop_statis.yaml'],   
binarization_args: {'shuffle': False, 'with_txt': True, 'with_wav': True, 'with_align': True, 'with_spk_embed': False, 'with_f0': True, 'with_f0cwt': True}, binarizer_cls: data_gen.singing.binarize.OpencpopBinarizer, binary_data_dir: data/binary/opencpop-midi-dp, check_val_every_n_epoch: 10, clip_grad_norm: 1,   
content_cond_steps: [], cwt_add_f0_loss: False, cwt_hidden_size: 128, cwt_layers: 2, cwt_loss: l1,   
cwt_std_scale: 0.8, datasets: ['popcs'], debug: False, dec_ffn_kernel_size: 9, dec_layers: 4,   
decay_steps: 50000, decoder_type: fft, dict_dir: , diff_decoder_type: wavenet, diff_loss_type: l1,   
dilation_cycle_length: 4, dropout: 0.1, ds_workers: 4, dur_enc_hidden_stride_kernel: ['0,2,3', '0,2,3', '0,1,3'], dur_loss: mse,   
dur_predictor_kernel: 3, dur_predictor_layers: 5, enc_ffn_kernel_size: 9, enc_layers: 4, encoder_K: 8,   
encoder_type: fft, endless_ds: True, ffn_act: gelu, ffn_padding: SAME, fft_size: 512,   
fmax: 12000, fmin: 30, fs2_ckpt: , gaussian_start: True, gen_dir_name: ,   
gen_tgt_spk_id: -1, hidden_size: 256, hop_size: 128, infer: False, keep_bins: 80,   
lambda_commit: 0.25, lambda_energy: 0.0, lambda_f0: 0.0, lambda_ph_dur: 1.0, lambda_sent_dur: 1.0,   
lambda_uv: 0.0, lambda_word_dur: 1.0, load_ckpt: , log_interval: 100, loud_norm: False,   
lr: 0.001, max_beta: 0.06, max_epochs: 1000, max_eval_sentences: 1, max_eval_tokens: 60000,   
max_frames: 8000, max_input_tokens: 1550, max_sentences: 48, max_tokens: 40000, max_updates: 160000,   
mel_loss: ssim:0.5|l1:0.5, mel_vmax: 1.5, mel_vmin: -6.0, min_level_db: -120, norm_type: gn,   
num_ckpt_keep: 3, num_heads: 2, num_sanity_val_steps: 1, num_spk: 1, num_test_samples: 0,  
num_valid_plots: 10, optimizer_adam_beta1: 0.9, optimizer_adam_beta2: 0.98, out_wav_norm: False, pe_ckpt: checkpoints/0102_xiaoma_pe,  
pe_enable: True, pitch_ar: False, pitch_enc_hidden_stride_kernel: ['0,2,5', '0,2,5', '0,2,5'], pitch_extractor: parselmouth, pitch_loss: l1,  
pitch_norm: log, pitch_type: frame, pre_align_args: {'use_tone': False, 'forced_align': 'mfa', 'use_sox': True, 'txt_processor': 'zh_g2pM', 'allow_no_txt': False, 'denoise': False}, pre_align_cls: data_gen.singing.pre_align.SingingPreAlign, predictor_dropout: 0.5,  
predictor_grad: 0.1, predictor_hidden: -1, predictor_kernel: 5, predictor_layers: 5, prenet_dropout: 0.5,  
prenet_hidden_size: 256, pretrain_fs_ckpt: , processed_data_dir: data/processed/popcs, profile_infer: False, raw_data_dir: data/raw/popcs,  
ref_norm_layer: bn, rel_pos: True, reset_phone_dict: True, residual_channels: 256, residual_layers: 20,  
save_best: False, save_ckpt: True, save_codes: ['configs', 'modules', 'tasks', 'utils', 'usr'], save_f0: True, save_gt: False,  
schedule_type: linear, seed: 1234, sort_by_len: True, spec_max: [-0.79453, -0.81116, -0.61631, -0.30679, -0.13863, -0.050652, -0.11563, -0.10679, -0.091068, -0.062174, -0.075302, -0.072217, -0.063815, -0.073299, 0.007361, -0.072508, -0.050234, -0.16534, -0.26928, -0.20782, -0.20823, -0.11702, -0.070128, -0.065868, -0.012675, 0.0015121, -0.089902, -0.21392, -0.23789, -0.28922, -0.30405, -0.23029, -0.22088, -0.21542, -0.29367, -0.30137, -0.38281, -0.4359, -0.28681, -0.46855, -0.57485, -0.47022, -0.54266, -0.44848, -0.6412, -0.687, -0.6486, -0.76436, -0.49971, -0.71068, -0.69724, -0.61487, -0.55843, -0.69773, -0.57502, -0.70919, -0.82431, -0.84213, -0.90431, -0.8284, -0.77945, -0.82758, -0.87699, -1.0532, -1.0766, -1.1198, -1.0185, -0.98983, -1.0001, -1.0756, -1.0024, -1.0304, -1.0579, -1.0188, -1.05, -1.0842, -1.0923, -1.1223, -1.2381, -1.6467], spec_min: [-6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0],  
spk_cond_steps: [], stop_token_weight: 5.0, task_cls: usr.diffsinger_task.DiffSingerMIDITask, test_ids: [], test_input_dir: ,  
test_num: 0, test_prefixes: ['popcs-说散就散', 'popcs-隐形的翅膀'], test_set_name: test, timesteps: 100, train_set_name: train,  
use_denoise: False, use_energy_embed: False, use_gt_dur: False, use_gt_f0: False, use_midi: True,  
use_nsf: True, use_pitch_embed: False, use_pos_embed: True, use_spk_embed: False, use_spk_id: False,  
use_split_spk_id: False, use_uv: True, use_var_enc: False, val_check_interval: 2000, valid_num: 0,  
valid_set_name: valid, validate: False, vocoder: vocoders.hifigan.HifiGAN, vocoder_ckpt: checkpoints/0109_hifigan_bigpopcs_hop128, warmup_updates: 2000,  
wav2spec_eps: 1e-6, weight_decay: 0, win_size: 512, work_dir: ,  
Using these as onnxruntime providers: ['CPUExecutionProvider']

说明PaddleHub已经配置好了,执行过程中预训练模型会被下载到E盘。

Diffsinger模型推理

DiffSinger是一个基于扩散概率模型的 SVS 声学模型,一个参数化的马尔科夫链,它可以根据乐谱的条件,迭代地将噪声转换为旋律谱。

推理之前,安装推理加速模块:

pip install onnxruntime

通过隐式优化变异约束,DiffSinger 可以被稳定地训练并产生真实的输出。

这里通过内置的singing_voice_synthesis方法:

singing_voice_synthesis(inputs: Dict[str, str],sample_num: int = 1,  
save_audio: bool = True,save_dir: str = 'outputs')

参数含义是:

1. inputs (Dict[str, str]): 输入歌词数据。  
2. sample_num (int): 生成音频的数量。  
3. save_audio (bool): 是否保存音频文件。  
4.save_dir (str): 保存处理结果的文件目录。

在官方文档中:

https://github.com/MoonInTheRiver/DiffSinger/blob/master/docs/README-SVS-opencpop-cascade.md

作者给出了一段示例代码:

results = module.singing_voice_synthesis(  inputs={  'text': '小酒窝长睫毛AP是你最美的记号',  'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4',  'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340',  'input_type': 'word'  },  sample_num=1,  save_audio=True,  save_dir='outputs'  
)  
# text:歌词文本  
# notes:音名  
# notes_duration:音符时值(时长)  
# input_type:输入类型(文本)

示例中使用的是林俊杰的歌曲《小酒窝》。

这里,最核心的逻辑是inputs的notes参数,也就是乐谱中的音名,而notes_duration参数则是该音名的持续时长。

音名对照参照:

1                   A0          6L4          A2          大字2组        27.5  2                   A#0        #6L4        A#2                          29.1353  3                   B0          7L4          B2                            30.8677  4        1         C1          1L3          C1          大字1组        32.7032  5        2         C#1        #1L3        C#1                         34.6479  6        3         D1          2L3          D1                           36.7081  7        4         D#1        #2L3        D#1                        38.8909  8        5         E1          3L3           E1                           41.2035  9        6         F1          4L3           F1                           43.6536  
10       7         F#1        #4L3         F#1                         46.2493  
11       8         G1          5L3          G1                           48.9995  
12       9         G#1        #5L3        G#1                         51.913  
13       10        A1          6L3           A1                           55   
14       11        A#1       #6L3          A#1                        58.2705  
15       12        B1          7L3           B1                           61.7354    16       13        C2         1L2            C          大字组         65.4064  
17       14        C#2       #1L2         #C                          69.2957  
18       15        D2         2L2            D                           73.4162  
19       16        D#2       #2L2         #D                         77.7817  
20       17        E2         3L2            E                           82.4069  
21       18        F2         4L2            F                            87.3071  
22       19        F#2       #4L2         #F                          92.4986  
23       20        G2         5L2           G                           97.9989  
24       21        G#2      #5L2         #G                         103.826  
25       22        A2         6L2           A                           110  
26       23        A#2       #6L2        #A                          116.541  
27       24        B2         7L2           B                           123.471  28       25        C3         1L1           c         小字组          130.813  
29       26        C#3      #1L1         #c                          138.591  
30       27        D3         2L1           d                           146.832  
31       28        D#3      #2L1         #d                         155.563  
32       29        E3          3L1          e                           164.814  
33       30        F3          4L1          f                            174.614  
34       31        F#3       #4L1        #f                           184.997  
35       32        G3         5L1           g                           195.998  
36       33        G#3      #5L1         #g                          207.652  
37       34        A3          6L1          a                            220  
38       35        A#3       #6L1        #a                          233.082  
39       36        B3         7L1           b                            246.942  40       37        C4          1             c1     小字1组(中央C)   261.626  
41       38        C#4       #1           c#1                           277.183  
42       39        D4         2              d1                            293.665  
43       40        D#4       #2           d#1                          311.127  
44       41        E4         3               e1                           329.628  
45       42        F4         4               f1                            349.228  
46       43        F#4       #4            f#1                          369.994  
47       44        G4         5              g1                           391.995  
48       45        G#4      #5            g#1                         415.305  
49       46        A4         6              a1     (国际标准A音)    440  
50       47        A#4      #6            a#1                          466.164  
51       48        B4         7              b1                           493.883   52       49        C5        1H1           c2       小字2组          523.251  
53       50        C#5     #1H1          c#2                        554.365  
54       51        D5        2H1           d2                          587.33  
55       52        D#5     #2H1         d#2                        622.254  
56       53        E5        3H1           e2                          659.255  
57       54        F5        4H1           f2                           698.456  
58       55        F#5      #4H1         f#2                        739.989  
59       56        G5        5H1          g2                          783.991  
60       57        G#5      #5H1        g#2                       830.609  
61       58        A5         6H1          a2                         880  
62       59        A#5      #6H1        a#2                       932.328  
63       60        B5         7H1          b2                        987.767  64       61        C6         1H2          c3       小字3组      1046.5  
65       62        C#6      #1H2        c#3                      1108.73  
66       63        D6         2H2          d3                        1174.66   
67       64        D#6      #2H2        d#3                      1244.51  
68       65        E6         3H2          e3                        1318.51  
69       66        F6         4H2           f3                        1396.91  
70       67        F#6      #4H2         f#3                      1479.98  
71       68        G6         5H2          g3                       1567.98  
72       69        G#6      #5H2         g#3                    1661.22  
73       70        A6         6H2          a3                       1760  
74       71        A#6      #6H2         a#3                     1864.66  
75       72        B6         7H2           b3                      1975.53  76       73        C7         1H3           c4       小字4组     2093  
77       74        C#7      #1H3         c#4                     2217.46  
78       75        D7          2H3          d4                      2349.32  
79       76        D#7      #2H3         d#4                    2489.02  
80       77        E7          3H3          e4                      2637.02  
81       78        F7          4H3          f4                       2793.83  
82       79        F#7       #4H3         f#4                    2959.96  
83       80        G7          5H3          g4                     3135.96  
84       81        G#7      #5H3         g#4                    3322.44  
85       82        A7          6H3          a4                      3520  
86       83        A#7      #6H3         a#4                    3729.31  
87       84        B7          7H3          b4                      3951.07  88                   C8         1H4           c5     小字5组       4186.01

说白了,就是按照简谱的键位转换为音名。

以旋律相对简单的《学猫叫》为例子:

C’ D’ E’ G C’ E’ E’ D’ C’D’ G’ G’G’ G’ C’ B C’ C’ C’ C’ C’ B C’ B C’ B A G  
我们一起学猫叫 一起喵喵喵喵喵 在你面前撒个娇 哎呦喵喵喵喵喵  F C Dm G  
G G A A A A A G E G E G D’ C’ G E’ E’ E’ F’ G’ C’ C’ E’ D’  
我的心脏砰砰跳 迷恋上你的坏笑 你不说爱我 我就喵喵喵

它的前七个音符分别对应CDEGCEE,对应代码:

results = module.singing_voice_synthesis(  inputs={  'text': '我们一起学猫叫',  'notes': 'D#3 | E3 | E5 | G4 | C5 | E5 | E5',  'notes_duration': '0.407140 | 0.307140 | 0.307140 | 0.307140 | 0.307140  | 0.307140 | 0.307140 '  ,  'input_type': 'word'  },  sample_num=1,  save_audio=True,  save_dir='./outputs'  
)

这里推理的音频存储在outputs文件夹内。

结语

利用DiffSinger我们可以简单的将歌词和旋律通过代码转换为实体歌声,但需要注意的是该项目只是输出了清唱部分,真正的音乐作品还需要添加伴奏以及调音等操作,欲知后事如何,且听下回分解,另外,魔改版本的《学猫叫》已经上传到Youtube(B站):刘悦的技术博客,欢迎品鉴。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142628.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《数据结构、算法与应用C++语言描述》-队列的应用-工厂仿真

工厂仿真 完整可编译运行代码见:Github::Data-Structures-Algorithms-and-Applications/_19Factory simulation/ 问题描述 一个工厂有m台机器。工厂的每项任务都需要若干道工序才能完成。每台机器都执行一道工序,不同的机器执行不同的工序。一台机器一…

Python数据结构:集合(set)详解

1.集合的概念 在Python中,集合(Set)是一种无序、不重复的数据类型,它的实现基于哈希表,是由唯一元素组成的。集合中不允许有重复的元素,即相同元素只能出现一次。Python中的集合类似于数学中的集合&#xf…

Java14新增特性

前言 前面的文章,我们对Java9、Java10、Java11、Java12 、Java13的特性进行了介绍,对应的文章如下 Java9新增特性 Java10新增特性 Java11新增特性 Java12新增特性 Java13新增特性 今天我们来一起看一下Java14这个版本的一些重要信息 版本介绍 Java 14…

JNDI注入

1、什么是 JNDI JNDI(Java Naming and Directory Interface, Java命名和目录接口),JNDI API 映射为特定的命名(Name)和目录服务(Directory)系统,使得Java应用程序可以和这些命名(Name&#xff…

【Shell脚本11】Shell 函数

Shell 函数 linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。 shell中函数的定义格式如下: [ function ] funname [()]{action;[return int;]}说明: 1、可以带function fun() 定义,也可以直接fun() 定义,不带任何…

旺店通·企业版对接打通金蝶云星空查询调拨单接口与分布式调入单新增接口

旺店通企业版对接打通金蝶云星空查询调拨单接口与分布式调入单新增接口 源系统:旺店通企业版 旺店通是北京掌上先机网络科技有限公司旗下品牌,国内的零售云服务提供商,基于云计算SaaS服务模式,以体系化解决方案,助力零售企业数字化…

Android framework添加自定义的Product项目,lunch目标项目

文章目录 Android framework添加自定义的Product项目1.什么是Product?2.定义自己的Product玩一玩 Android framework添加自定义的Product项目 1.什么是Product? 源码目录下输入lunch命令之后,简单理解下面这些列表就是product。用于把系统编…

如何显示标注的纯黑mask图

文章目录 前言一、二分类mask显示二、多分类mask显示 前言 通常情况下,使用标注软件标注的标签图看起来都是纯黑的,因为mask图为单通道的灰度图,而灰度图一般要像素值大于128后,才会逐渐显白,255为白色。而标注的时候…

sass 生成辅助色

背景 一个按钮往往有 4 个状态。 默认状态hover鼠标按下禁用状态 为了表示这 4 个状态&#xff0c;需要设置 4 个颜色来提示用户。 按钮类型一般有 5 个&#xff1a; 以 primary 类型按钮为例&#xff0c;设置它不同状态下的颜色&#xff1a; <button class"btn…

IP-guard Webserver view 远程命令执行漏洞【2023最新漏洞】

IP-guard Webserver view 远程命令执行漏洞【2023最新漏洞】 一、漏洞描述二、漏洞影响三、漏洞危害四、FOFA语句五、漏洞复现1、手动复现yaml pocburp发包 2、自动化复现小龙POC检测工具下载地址 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传…

R程序 示例4.3.2版本包 在centos进行编译部署

为了在CentOS上下载和编译R语言4.3.2包&#xff0c;可以按照以下步骤进行操作&#xff1a; 1.首先&#xff0c;需要安装一些必要的依赖项。可以使用以下命令安装它们&#xff1a; sudo yum install -y epel-release sudo yum install -y gcc gcc-c gcc-gfortran readline-dev…

Linux 使用随记

Linux 使用随记 shell 命令行模式登录后所取得的程序被成为shell&#xff0c;这是因为这个程序负责最外层的跟用户&#xff08;我们&#xff09;通信工作&#xff0c;所以才被戏称为shell。 命令 1、命令格式 command [-options] parameter1 parameter2 … 1、一行命令中第…

C#几种截取字符串的方法

在C#编程中&#xff0c;经常需要对字符串进行截取操作&#xff0c;即从一个长字符串中获取所需的部分信息。本文将介绍几种常用的C#字符串截取方法&#xff0c;并提供相应的示例代码。 目录 1. 使用Substring方法2. 使用Split方法3. 使用Substring和IndexOf方法4. 使用Regex类…

HBase学习笔记(3)—— HBase整合Phoenix

目录 Phoenix Shell 操作 Phoenix JDBC 操作 Phoenix 二级索引 HBase整合Phoenix Phoenix 简介 Phoenix 是 HBase 的开源 SQL 皮肤。可以使用标准 JDBC API 代替 HBase 客户端 API来创建表&#xff0c;插入数据和查询 HBase 数据 使用Phoenix的优点 在 Client 和 HBase …

uni-app报错“本应用使用HBuilderX x.x.x 或对应的cli版本编译,而手机端SDK版本是x.x.x不匹配的版本可能造成应用异常”

uniapp开发的一个跨平台软件&#xff0c;在安卓模拟器上启动的时候报警告&#xff1a; 官方给的解释&#xff1a;uni-app运行环境版本和编译器版本不一致的问题 - DCloud问答 解决办法有两个 方法一&#xff1a;添加忽略警告的配置 项目根目录下找到 manifest.json&#xf…

计算机毕业设计 基于SpringBoot的销售项目流程化管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

微信小程序 解决tab页切换过快 数据出错问题

具体问题&#xff1a;切换tab页切换过快时,上一个列表接口未响应完和当前列表数据冲突 出现数据错误 具体效果如下&#xff1a; 解决方式&#xff1a;原理 通过判断是否存在request 存在中断 并发送新请求 不存在新请求 let shouldAbort false; // 添加一个中断标志 let re…

量化交易:使用 python 进行股票交易回测

执行环境: Google Colab 1. 下载数据 import yfinance as yfticker ZM df yf.download(ticker) df2. 数据预处理 df df.loc[2020-01-01:].copy()使用了 .loc 方法来选择索引为 ‘2020-01-01’ 以后的所有行数据。通过 .copy() 方法创建了一个这些数据的副本&#xff0c;确…

星宿UI2.51资源付费变现小程序 支持流量主广告投放

目前&#xff0c;最新版的星宿UI是2.51版本。要搭建星宿UI&#xff0c;您需要准备备用域名、服务器和微信小程序账号。星宿UI提供了多项功能&#xff0c;包括文章展示、文章分类、资源链接下载和轮播图等。此外&#xff0c;还支持直接下载附件功能。这些功能使得星宿UI非常适合…