OpenCV+特征检测

检测

函数cv.cornerHarris()。其参数为:

  • img 输入图像,应为灰度和float32类型
  • blockSize是拐角检测考虑的邻域大小
  • ksize 使用的Sobel导数的光圈参数
  • k 等式中的哈里斯检测器自由参数
import numpy as np
import cv2 as cv
filename = 'chessboard.png'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
# result用于标记角点,并不重要
dst = cv.dilate(dst,None)
# 最佳值的阈值,它可能因图像而异。
img[dst>0.01*dst.max()]=[0,0,255]
cv.imshow('dst',img)
if cv.waitKey(0) & 0xff == 27:
cv.destroyAllWindows()

SubPixel精度的转角

函数cv.cornerSubPix(),它进一步细化了以亚像素精度检测到的角落。和往常一样,我们需要先找到哈里斯角。
然后我们通过这些角的质心(可能在一个角上有一堆像素,我们取它们的质心)来细化它们。对于这个函数,我们必须定义何时停止迭代的条件。我们在特定的迭代次数或达到一定的精度后停止它,无论先发生什么。我们还需要定义它将搜索角落的邻居的大小。

import numpy as np
import cv2 as cv
filename = 'chessboard2.jpg'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
寻找哈里斯角
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
dst = cv.dilate(dst,None)
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# 寻找质心
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# 定义停止和完善拐角的条件
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
# 绘制
res = np.hstack((centroids,corners))
res = np.int0(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]] = [0,255,0]
cv.imwrite('subpixel5.png',img)

Shi-tomas拐角检测器和益于跟踪的特征

它通过Shi-Tomasi方法(或哈里斯角检测,如果指定)找到图像中的N个最强角。像往常一样,图像应该是灰度图像。然后,指定要查找的角数。然后,您指定质量级别,该值是介于0-1 之间的值,该值表示每个角落都被拒绝的最低拐角质量。然后,我们提供检测到的角之间的最小欧式距离。 利用所有这些信息,该功能可以找到图像中的拐角。低于平均质量的所有拐角点均被拒绝。然后,它会根据质量以降序对剩余的角进行排序。然后函数首先获取最佳拐角,然后丢弃最小距离范围内的所有附近拐角,然后返回N个最佳拐角。 在下面的示例中,我们将尝试找到25个最佳弯角:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('blox.jpg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
corners = cv.goodFeaturesToTrack(gray,25,0.01,10)
corners = np.int0(corners)
for i in corners:
x,y = i.ravel()
cv.circle(img,(x,y),3,255,-1)
plt.imshow(img),plt.show()

SIFT尺度不变特征变换

import numpy as np
import cv2 as cv
img = cv.imread('home.jpg')
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d.SIFT_create()
kp = sift.detect(gray,None)
# sift.detect()函数在图像中找到关键点。如果只想搜索图像的一部分,则可以通过掩码。每个关键
点是一个特殊的结构,具有许多属性,例如其(x,y)坐标,有意义的邻域的大小,指定其方向的角度,指定关键点强度的响应等。
img=cv.drawKeypoints(gray,kp,img)
# OpenCV还提供**cv.drawKeyPoints**()函数,该函数在关键点的位置绘制小圆圈。 如果将标志
**cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS**传递给它,它将绘制一个具有关键点大小的圆,甚至会显示其方向。
cv.imwrite('sift_keypoints.jpg',img)

SURF简介(加速)

SURF.detect(),SURF.compute()等来查找关键点和描述符。

# 创建SURF对象。你可以在此处或以后指定参数
# 这里设置海森矩阵的阈值为400,在实际情况下,最好将值设为300-500
surf = cv.xfeatures2d.SURF_create(400)
# 直接查找关键点和描述符kp, des = surf.detectAndCompute(img,None)

用于角点检测的FAST算法(任何其他特征检测器)

可以指定阈值,是否要应用非极大抑制,要使用的邻域等。 对于邻域,定义了三个标志,分别为cv.FAST_FEATURE_DETECTOR_TYPE_5_-8 , cv.FAST_FEATURE_DETECTOR_TYPE_7_-12 和cv.FAST_FEATURE_DETECTOR_TYPE_9_-16 。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# 用默认值初始化FAST对象
fast = cv.FastFeatureDetector_create()
# 寻找并绘制关键点
kp = fast.detect(img,None)
img2 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
# 打印所有默认参数
print( "Threshold: {}".format(fast.getThreshold()) )
print( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression()) )
print( "neighborhood: {}".format(fast.getType()) )
print( "Total Keypoints with nonmaxSuppression: {}".format(len(kp)) )
cv.imwrite('fast_true.png',img2)
# 关闭非极大抑制(一个位置只有一个关键点)
fast.setNonmaxSuppression(0)
kp = fast.detect(img,None)
print( "Total Keypoints without nonmaxSuppression: {}".format(len(kp)) )
img3 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
cv.imwrite('fast_false.png',img3)

BRIEF(二进制的鲁棒独立基本特征)

它提供了一种直接查找二进制字符串而无需查找描述符的快捷方式。它需要平滑的图像补丁,并以独特的方式(在纸上展示)选择一组n_d(x,y)位置对。然后,在这些位置对上进行一些像素强度比较。例如,令第一位置对为p和q。如果I§<I(q),则结果为1,否则为0。将其应用于所有n_d个位置对以获得n_d维位串。
BRIEF是特征描述符,它不提供任何查找特征的方法。函数brief.getDescriptorSize() 给出以字节为单位的n_d大小。默认情况下为32。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# 初始化FAST检测器
star = cv.xfeatures2d.StarDetector_create()
# 初始化BRIEF提取器
brief = cv.xfeatures2d.BriefDescriptorExtractor_create()
# 找到STAR的关键点
kp = star.detect(img,None)
# 计算BRIEF的描述符
kp, des = brief.compute(img, kp)
print( brief.descriptorSize() )
print( des.shape )

ORB(面向快速和旋转的BRIEF)

与往常一样,我们必须使用函数cv.ORB()或使用feature2d通用接口来创建ORB对象。它具有许多可选参数。最有用的是nFeatures,它表示要保留的最大特征数(默认为500),scoreType表示是对特征进行排名的Harris分数还是FAST分数(默认为Harris分数)等。另一个参数WTA_K决定点数产生定向的BRIEF描述符的每个元素。默认情况下为两个,即一次选择两个点。在这种情况下,为了匹配,将使用NORM_HAMMING距离。如果WTA_K为3或4,则需要3或4个点来生成Brief描述符,则匹配距离由NORM_HAMMING2定义。 下面是显示ORB用法的简单代码。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# 初始化ORB检测器
orb = cv.ORB_create()
# 用ORB寻找关键点
kp = orb.detect(img,None)
# 用ORB计算描述符
kp, des = orb.compute(img, kp)
# 仅绘制关键点的位置,而不绘制大小和方向
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
plt.imshow(img2), plt.show()

特征匹配

ORB

创建一个距离测量值为cv.NORM_HAMMING的BFMatcher对象(因为我们使用的是ORB),并且启用了CrossCheck以获得更好的结果。然后,我们使用Matcher.match()方法来获取两个图像中的最佳匹配。我们按照距离的升序对它们进行排序,以使最佳匹配(低距离)排在前面。然后我们只抽出前10的匹配(只是为了提高可见度。您可以根据需要增加它)

# 创建BF匹配器的对象
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True) # 匹配描述符.
matches = bf.match(des1,des2) # 根据距离排序
matches = sorted(matches, key = lambda x:x.distance) # 绘制前10的匹配项
img3 = cv.drawMatches(img1,kp1,img2,kp2,matches[:10],None,flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
plt.imshow(img3),plt.show()

matchs = bf.match(des1,des2) 行的结果是DMatch对象的列表。该DMatch对象具有以下属性:

  • DMatch.distance-描述符之间的距离。越低越好
  • DMatch.trainIdx-训练描述符中的描述符索引
  • DMatch.queryIdx-查询描述符中的描述符索引
  • DMatch.imgIdx-训练图像的索引

带有SIFT描述符和比例测试的Brute-Force匹配

使用BFMatcher.knnMatch()获得k个最佳匹配。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
img1 = cv.imread('box.png',cv.IMREAD_GRAYSCALE) # 索引图像
img2 = cv.imread('box_in_scene.png',cv.IMREAD_GRAYSCALE) # 训练图像
# 初始化SIFT描述符
sift = cv.xfeatures2d.SIFT_create()
# 基于SIFT找到关键点和描述符
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# 默认参数初始化BF匹配器
bf = cv.BFMatcher()
matches = bf.knnMatch(des1,des2,k=2)
# 应用比例测试
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append([m])
# cv.drawMatchesKnn将列表作为匹配项。
img3 =cv.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS
plt.imshow(img3),plt.show()

基于匹配器的FLANN

FLANN是近似最近邻的快速库。它包含一组算法,这些算法针对大型数据集中的快速最近邻搜索和高维特征进行了优化。对于大型数据集,它的运行速度比BFMatcher快。我们将看到第二个基于FLANN的匹配器示例。
对于基于FLANN的匹配器,我们需要传递两个字典,这些字典指定要使用的算法,其相关参数等。第一个是IndexParams。对于各种算法,要传递的信息在FLANN文档中进行了说明。概括来说,对于SIFT,SURF等算法,您可以通过以下操作:

FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)

使用ORB时,你可以参考下面。根据文档建议使用带注释的值,但在某些情况下未提供必需的参
数。其他值也可以正常工作。

FLANN_INDEX_LSH = 6
index_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2

第二个字典是SearchParams。它指定索引中的树应递归遍历的次数。较高的值可提供更好的精度,但也需要更多时间。如果要更改值,请传递search_params = dict(checks = 100)

flann = cv.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142617.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何显示标注的纯黑mask图

文章目录 前言一、二分类mask显示二、多分类mask显示 前言 通常情况下&#xff0c;使用标注软件标注的标签图看起来都是纯黑的&#xff0c;因为mask图为单通道的灰度图&#xff0c;而灰度图一般要像素值大于128后&#xff0c;才会逐渐显白&#xff0c;255为白色。而标注的时候…

sass 生成辅助色

背景 一个按钮往往有 4 个状态。 默认状态hover鼠标按下禁用状态 为了表示这 4 个状态&#xff0c;需要设置 4 个颜色来提示用户。 按钮类型一般有 5 个&#xff1a; 以 primary 类型按钮为例&#xff0c;设置它不同状态下的颜色&#xff1a; <button class"btn…

IP-guard Webserver view 远程命令执行漏洞【2023最新漏洞】

IP-guard Webserver view 远程命令执行漏洞【2023最新漏洞】 一、漏洞描述二、漏洞影响三、漏洞危害四、FOFA语句五、漏洞复现1、手动复现yaml pocburp发包 2、自动化复现小龙POC检测工具下载地址 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传…

R程序 示例4.3.2版本包 在centos进行编译部署

为了在CentOS上下载和编译R语言4.3.2包&#xff0c;可以按照以下步骤进行操作&#xff1a; 1.首先&#xff0c;需要安装一些必要的依赖项。可以使用以下命令安装它们&#xff1a; sudo yum install -y epel-release sudo yum install -y gcc gcc-c gcc-gfortran readline-dev…

Linux 使用随记

Linux 使用随记 shell 命令行模式登录后所取得的程序被成为shell&#xff0c;这是因为这个程序负责最外层的跟用户&#xff08;我们&#xff09;通信工作&#xff0c;所以才被戏称为shell。 命令 1、命令格式 command [-options] parameter1 parameter2 … 1、一行命令中第…

UML建模语言

UML建模语言 类的关系 依赖关系 类的方法中使用形参、局部变量或者静态方法的方式调用其他类&#xff0c;表示当前类依赖其他类。 public class Main {public void eat(Person person) {person.play();// 方法参数Student student new Student();student.study();// 局部变…

4 条件判断和循环

文章目录 一、条件判断和循环1.1 if语句1.2 if-else1.3 if-elif-else1.4 for循环1.5 while循环1.6 break退出循环1.7 continue继续循环1.8 多重循环 二、练习题小结 一、条件判断和循环 1.1 if语句 输入用户年龄&#xff0c;根据年龄打印不同的内容&#xff0c;在Python程序中…

C#几种截取字符串的方法

在C#编程中&#xff0c;经常需要对字符串进行截取操作&#xff0c;即从一个长字符串中获取所需的部分信息。本文将介绍几种常用的C#字符串截取方法&#xff0c;并提供相应的示例代码。 目录 1. 使用Substring方法2. 使用Split方法3. 使用Substring和IndexOf方法4. 使用Regex类…

JVM之垃圾回收

1. 如何判断对象可以回收 1.1 引用计数法 引用计数法是一种内存管理技术&#xff0c;其中每个对象都有一个与之关联的引用计数。引用计数表示当前有多少个指针引用了该对象。当引用计数变为零时&#xff0c;表示没有指针再指向该对象&#xff0c;该对象可以被释放&#xff0c…

HBase学习笔记(3)—— HBase整合Phoenix

目录 Phoenix Shell 操作 Phoenix JDBC 操作 Phoenix 二级索引 HBase整合Phoenix Phoenix 简介 Phoenix 是 HBase 的开源 SQL 皮肤。可以使用标准 JDBC API 代替 HBase 客户端 API来创建表&#xff0c;插入数据和查询 HBase 数据 使用Phoenix的优点 在 Client 和 HBase …

C++虚基类详解

多继承&#xff08;Multiple Inheritance&#xff09; 是指从多个直接基类中产生派生类的能力&#xff0c;多继承的派生类继承了所有父类的成员。尽管概念上非常简单&#xff0c;但是多个基类的相互交织可能会带来错综复杂的设计问题&#xff0c;命名冲突就是不可回避的一个。…

云原生Kubernetes系列 | 通过容器互联搭建wordpress博客系统

云原生Kubernetes系列 | 通过容器互联搭建wordpress博客系统 通过容器互联搭建一个wordpress博客系统。wordpress系统是需要连接到数据库上的,所以wordpress和mysql的镜像都是需要的。wordpress在创建过程中需要指定一些参数。创建mysql容器时需要把mysql的数据保存在宿主机本…

uni-app报错“本应用使用HBuilderX x.x.x 或对应的cli版本编译,而手机端SDK版本是x.x.x不匹配的版本可能造成应用异常”

uniapp开发的一个跨平台软件&#xff0c;在安卓模拟器上启动的时候报警告&#xff1a; 官方给的解释&#xff1a;uni-app运行环境版本和编译器版本不一致的问题 - DCloud问答 解决办法有两个 方法一&#xff1a;添加忽略警告的配置 项目根目录下找到 manifest.json&#xf…

C现代方法(第20章)笔记——底层程序设计

文章目录 第20章 底层程序设计20.1 位运算符20.1.1 移位运算符20.1.2 按位取反运算符、按位与运算符、按位异或运算符和按位或运算符20.1.3 用位运算符访问位20.1.4 用位运算符访问位域20.1.5 程序——XOR加密 20.2 结构中的位域20.2.1 位域是如何存储的 20.3 其他底层技术20.3…

计算机毕业设计 基于SpringBoot的销售项目流程化管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

k8s备份

cpu 磁盘io 往主的写&#xff0c;同步给备 rootk8s-etcd02:~# cat /etc/systemd/system/etcd.service [Unit] DescriptionEtcd Server Afternetwork.target Afternetwork-online.target Wantsnetwork-online.target Documentationhttps://github.com/coreos[Service] Typen…

high perfermance computer usage

简单记一下hpc的使用&#xff1a; hpc就是一些科研机构或者大学建立的服务器中心。我这大学的每一位学生&#xff0c;可以轻松使用hpc批量跑数据&#xff0c;也可以新建自己的server跑一些local data&#xff0c;后者每个学生账号最大是32核512G的运行内存&#xff0c;体验非常…

微信小程序 解决tab页切换过快 数据出错问题

具体问题&#xff1a;切换tab页切换过快时,上一个列表接口未响应完和当前列表数据冲突 出现数据错误 具体效果如下&#xff1a; 解决方式&#xff1a;原理 通过判断是否存在request 存在中断 并发送新请求 不存在新请求 let shouldAbort false; // 添加一个中断标志 let re…

量化交易:使用 python 进行股票交易回测

执行环境: Google Colab 1. 下载数据 import yfinance as yfticker ZM df yf.download(ticker) df2. 数据预处理 df df.loc[2020-01-01:].copy()使用了 .loc 方法来选择索引为 ‘2020-01-01’ 以后的所有行数据。通过 .copy() 方法创建了一个这些数据的副本&#xff0c;确…