【图像分类】【深度学习】【Pytorch版本】GoogLeNet(InceptionV1)模型算法详解
文章目录
- 【图像分类】【深度学习】【Pytorch版本】GoogLeNet(InceptionV1)模型算法详解
- 前言
- GoogLeNet(InceptionV1)讲解
- Inception结构
- InceptionV1结构
- 1x1卷积的作用
- 辅助分类器
- GoogLeNet(InceptionV1)模型结构
- GoogLeNet(InceptionV1) Pytorch代码
- 完整代码
- 总结
前言
GoogLeNet(InceptionV1)是由谷歌的Szegedy, Christian等人在《Going Deeper With Convolutions【CVPR-2015】》【论文地址】一文中提出的模型,主要特点是提高了网络内部计算资源的利用率,允许增加网络的深度和宽度,同时保持计算预算不变。
GoogLeNet(InceptionV1)讲解
此前传统的方式简单粗暴的增加隐藏层(网络深度)和各层神经元数目(网络宽度)以达到提高网络性能的目的, 但这类方法存在致命的问题:更大的参数空间需要更多的计算资源并且更容易导致过拟合;网络越深则梯度越容易消失导致优化更加困难。
卷积神经网络的性能提高都是依赖于提高网络的深度和宽度,如何在增加网络深度和宽度的同时减少参数?解决思路便是全连接变成稀疏连接,GoogLeNet从网络结构上入手,改变了网络结构,提出了inception的卷积网络结构:
- 空间(spatial)上的稀疏连接:卷积神经网络本身对输入图像的局部进行卷积,而不是对整个图像进行卷积,参数共享降低了总参数的数目并减少了计算量。
- 在特征维度(feature channel)上的稀疏:多个尺寸上进行卷积再聚合,把相关性强的特征聚集到一起(也是种稀疏连接),并使用1x1卷积进行降维,减少通道数,限制网络的大小,降低了计算复杂度。
Inception结构
原始的(基本)Inception模块,其通过多个尺寸上进行卷积再聚合,来提取更密集的特征。
对输入做了4个分支,分别用不同尺寸的filter进行卷积或池化,最后再在特征维度上拼接到一起,以便下一阶段能够同时从不同的尺度上提取特征。这种全新的结构设计能带来以下好处:
- 采用大小不同的卷积核,在多个尺度上同时进行卷积,意味着感受野的大小不同,得到的的特征尺度不同,特征更为丰富也意味着最后分类判断时更加准确。
- inception在特征维度上进行分解 (稀疏矩阵分解原理),在多个尺度上预先把相关性强的特征单独汇聚,(Hebbian原则) 强化具有相似类型特征的filter之间的关联(filter bank),如分别聚集1x1的的特征、3x3的特征和5x5的特征,用更少的filter来提取相关的特征,再将多个尺度的filter bank特征进行组合。
InceptionV1结构
原始的Inception 结构存在一个不可忽视的问题:卷积运算运算量过大,如果特征图的通道数过大(即当上一层的输出通道数较大时)会导致当前Inception模块的运算消费巨大,特别是当前Inception模块中的pooling层输出的通道数和输入保持一致,且由于多组卷积核并联运算,因此这是随着层数的堆叠而爆炸式增长的!
针对这一问题对原始结构做了改进,加上1x1卷积层作为reduction层做降维和特征映射、空间信息整合和引入非线性,以达到网络的压缩从而减少计算量。
1x1卷积的作用
1x1卷积在卷积神经网络中起着重要的作用:
- 降维和特征映射:1x1卷积可以用于降低通道数(即特征的维度),通过减少输入特征图的通道数来降低计算和存储成本,这对于减少模型的参数量、加快计算速度以及控制过拟合都非常有用。同时,1x1卷积也可以用于增加通道数,以增加特征的表达能力;
- 空间信息整合:尽管1x1卷积的感受野很小,但它可以在通道维度上对输入特征进行组合和整合,从而引入跨通道的交互和增加模型的非线性能力(1x1卷积中的非线性激活函数),这有助于模型学习不同通道之间的相关性和特征之间的互动,更好地拟合复杂的数据分布和提取更丰富的特征表示;
- 网络的压缩和加速:1x1卷积可以减少通道数,压缩卷积神经网络,减小模型的计算量和存储需求,从而实现更快的推理速度和更高的效率。
使用128个3x3的卷积核对512通道特征图进行卷积
参数量:512×3×3×128=589824
计算量:512×3×3×128×W×H=589824×W×H
使用24个1x1卷积核先对512通道特征图降维,再用128个3x3的卷积核进行卷积:
参数量:512×1×1×24+24×3×3×128=12504
计算量:512×1×1×24×W×H+24×3×3×128×W×H=12504×W×H
1x1卷积成为设计高效、灵活和强大的网络架构的重要工具。
辅助分类器
在GoogLeNet中,除了主要的分类器外,还在网络的中间层添加了两个辅助分类器,提供了额外的监督信号,帮助网络更好地学习特征表示。
辅助分类器的作用和优势:
- 渐进式训练和梯度传播:辅助分类器的添加有助于渐进式训练和梯度传播。由于辅助分类器位于网络的中间层,它们可以为网络的早期层和中间层提供额外的监督信号。这有助于缓解梯度消失问题,使得梯度能够更好地传播回网络的早期层,从而促进网络的训练和优化。
- 正则化和减轻过拟合:辅助分类器的添加有助于正则化网络,并减轻过拟合的风险。通过在网络的中间层引入额外的分类器,可以引入额外的参数约束和损失函数,从而限制网络的复杂性,降低过拟合的可能性。
- 梯度传播路径的多样性:辅助分类器的存在为网络提供了多条梯度传播路径。这有助于梯度在网络中传播更远,使得网络能够更好地学习和优化,多条梯度传播路径还有助于避免梯度消失或梯度爆炸的问题。
- 辅助训练信号:辅助分类器的预测结果可以提供额外的训练信号,用于监督网络的中间层。这可以促使中间层学习更具判别性的特征表示,从而提高网络的性能和泛化能力。
- 多尺度特征融合:辅助分类器在不同层级上进行分类,可以捕捉到不同尺度的特征。这有助于提高网络的感受野和特征表达能力。
需要注意的是,辅助分类器并不直接用于最终的预测结果。在训练过程中,辅助分类器的损失函数会被加权,并与主分类器的损失函数相结合。在推理阶段,辅助分类器被舍弃,仅使用主分类器进行预测。
辅助分类器的添加是GoogLeNet(InceptionV1)架构的一个重要设计特点,也为后续的深度卷积神经网络的发展奠定了基础。
GoogLeNet(InceptionV1)模型结构
下图是原论文给出的关于GoogLeNet(InceptionV1)模型结构的详细示意图:
GoogLeNet(InceptionV1)在图像分类中分为两部分:backbone部分: 主要由InceptionV1模块、卷积层和池化层(汇聚层)组成,分类器部分: 由主分类器和俩个辅助分类器组成。
GoogLeNet(InceptionV1) Pytorch代码
卷积层组: 卷积层+激活函数
# 卷积组:Conv2d+ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.relu(x)return x
InceptionV1模块: 卷积层组+池化层
# InceptionV1:BasicConv2d+MaxPool2d
class InceptionV1(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):super(Inception, self).__init__()# 1×1卷积self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# 1×1卷积+3×3卷积self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) # 保证输出大小等于输入大小)# 1×1卷积+5×5卷积self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch5x5red, kernel_size=1),BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2) # 保证输出大小等于输入大小)# 3×3池化+1×1卷积self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)
辅助分类器: 池化层+卷积层组+全连接层+dropout
# 辅助分类器:AvgPool2d+BasicConv2d+Linear+dropout
class InceptionAux(nn.Module):def __init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()# 池化层self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)# 1×1卷积self.conv = BasicConv2d(in_channels, 128, kernel_size=1) # output[batch, 128, 4, 4]# 全连接层self.fc1 = nn.Linear(2048, 1024)self.fc2 = nn.Linear(1024, num_classes)def forward(self, x):# aux1: N x 512 x 14 x 14# aux2: N x 528 x 14 x 14x = self.averagePool(x)# aux1: N x 512 x 4 x 4# aux2: N x 528 x 4 x 4x = self.conv(x)# N x 128 x 4 x 4x = torch.flatten(x, 1)x = F.dropout(x, 0.5, training=self.training)# N x 2048x = F.relu(self.fc1(x), inplace=True)x = F.dropout(x, 0.5, training=self.training)# N x 1024x = self.fc2(x)# N x num_classesreturn x
完整代码
import torch.nn as nn
import torch
import torch.nn.functional as F
from torchsummary import summaryclass GoogLeNet(nn.Module):def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):super(GoogLeNet, self).__init__()self.aux_logits = aux_logitsself.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.conv2 = BasicConv2d(64, 64, kernel_size=1)self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception3a = InceptionV1(192, 64, 96, 128, 16, 32, 32)self.inception3b = InceptionV1(256, 128, 128, 192, 32, 96, 64)self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception4a = InceptionV1(480, 192, 96, 208, 16, 48, 64)self.inception4b = InceptionV1(512, 160, 112, 224, 24, 64, 64)self.inception4c = InceptionV1(512, 128, 128, 256, 24, 64, 64)self.inception4d = InceptionV1(512, 112, 144, 288, 32, 64, 64)self.inception4e = InceptionV1(528, 256, 160, 320, 32, 128, 128)self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception5a = InceptionV1(832, 256, 160, 320, 32, 128, 128)self.inception5b = InceptionV1(832, 384, 192, 384, 48, 128, 128)if self.aux_logits:self.aux1 = InceptionAux(512, num_classes)self.aux2 = InceptionAux(528, num_classes)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.dropout = nn.Dropout(0.4)self.fc = nn.Linear(1024, num_classes)if init_weights:self._initialize_weights()def forward(self, x):# N x 3 x 224 x 224x = self.conv1(x)# N x 64 x 112 x 112x = self.maxpool1(x)# N x 64 x 56 x 56x = self.conv2(x)# N x 64 x 56 x 56x = self.conv3(x)# N x 192 x 56 x 56x = self.maxpool2(x)# N x 192 x 28 x 28x = self.inception3a(x)# N x 256 x 28 x 28x = self.inception3b(x)# N x 480 x 28 x 28x = self.maxpool3(x)# N x 480 x 14 x 14x = self.inception4a(x)# N x 512 x 14 x 14if self.training and self.aux_logits: # eval model lose this layeraux1 = self.aux1(x)x = self.inception4b(x)# N x 512 x 14 x 14x = self.inception4c(x)# N x 512 x 14 x 14x = self.inception4d(x)# N x 528 x 14 x 14if self.training and self.aux_logits: # eval model lose this layeraux2 = self.aux2(x)x = self.inception4e(x)# N x 832 x 14 x 14x = self.maxpool4(x)# N x 832 x 7 x 7x = self.inception5a(x)# N x 832 x 7 x 7x = self.inception5b(x)# N x 1024 x 7 x 7x = self.avgpool(x)# N x 1024 x 1 x 1x = torch.flatten(x, 1)# N x 1024x = self.dropout(x)x = self.fc(x)# N x 1000(num_classes)if self.training and self.aux_logits: # 训练阶段使用return x, aux2, aux1return x# 对模型的权重进行初始化操作def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)# InceptionV1:BasicConv2d+MaxPool2d
class InceptionV1(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):super(InceptionV1, self).__init__()# 1×1卷积self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# 1×1卷积+3×3卷积self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) # 保证输出大小等于输入大小)# 1×1卷积+5×5卷积self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch5x5red, kernel_size=1),# 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue# Please see https://github.com/pytorch/vision/issues/906 for details.BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2) # 保证输出大小等于输入大小)# 3×3池化+1×1卷积self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)# 辅助分类器:AvgPool2d+BasicConv2d+Linear+dropout
class InceptionAux(nn.Module):def __init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()# 池化层self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)# 1×1卷积self.conv = BasicConv2d(in_channels, 128, kernel_size=1) # output[batch, 128, 4, 4]# 全连接层self.fc1 = nn.Linear(2048, 1024)self.fc2 = nn.Linear(1024, num_classes)def forward(self, x):# aux1: N x 512 x 14 x 14# aux2: N x 528 x 14 x 14x = self.averagePool(x)# aux1: N x 512 x 4 x 4# aux2: N x 528 x 4 x 4x = self.conv(x)# N x 128 x 4 x 4x = torch.flatten(x, 1)x = F.dropout(x, 0.5, training=self.training)# N x 2048x = F.relu(self.fc1(x), inplace=True)x = F.dropout(x, 0.5, training=self.training)# N x 1024x = self.fc2(x)# N x num_classesreturn x# 卷积组: Conv2d+ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.relu(x)return xif __name__ == '__main__':device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = GoogLeNet().to(device)summary(model, input_size=(3, 224, 224))
summary可以打印网络结构和参数,方便查看搭建好的网络结构。
总结
尽可能简单、详细的介绍了深度可分卷积的原理和卷积过程,讲解了GoogLeNet(InceptionV1)模型的结构和pytorch代码。