C# Onnx LSTR 基于Transformer的端到端实时车道线检测

目录

效果

模型信息

项目

代码

下载


效果

模型信息

lstr_360x640.onnx

Inputs
-------------------------
name:input_rgb
tensor:Float[1, 3, 360, 640]
name:input_mask
tensor:Float[1, 1, 360, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:pred_logits
tensor:Float[1, 7, 2]
name:pred_curves
tensor:Float[1, 7, 8]
name:foo_out_1
tensor:Float[1, 7, 2]
name:foo_out_2
tensor:Float[1, 7, 8]
name:weights
tensor:Float[1, 240, 240]
---------------------------------------------------------------

项目

VS2022+.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.IO;
using System.Text;
using System.Drawing;namespace Onnx_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;int inpWidth;int inpHeight;Mat image;string model_path = "";float[] factors = new float[2];SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;Tensor<float> mask_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;int len_log_space = 50;float[] log_space;float[] mean = new float[] { 0.485f, 0.456f, 0.406f };float[] std = new float[] { 0.229f, 0.224f, 0.225f };Scalar[] lane_colors = new Scalar[] { new Scalar(68, 65, 249), new Scalar(44, 114, 243), new Scalar(30, 150, 248), new Scalar(74, 132, 249), new Scalar(79, 199, 249), new Scalar(109, 190, 144), new Scalar(142, 144, 77), new Scalar(161, 125, 39) };private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new System.Drawing.Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){// 创建输入容器input_ontainer = new List<NamedOnnxValue>();// 创建输出会话options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件model_path = "model/lstr_360x640.onnx";inpWidth = 640;inpHeight = 360;onnx_session = new InferenceSession(model_path, options);// 创建输入容器input_ontainer = new List<NamedOnnxValue>();FileStream fileStream = new FileStream("model/log_space.bin", FileMode.Open);BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);log_space = new float[len_log_space];byte[] byteTemp;float fTemp;for (int i = 0; i < len_log_space; i++){byteTemp = br.ReadBytes(4);fTemp = BitConverter.ToSingle(byteTemp, 0);log_space[i] = fTemp;}br.Close();image_path = "test_img/0.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;System.Windows.Forms.Application.DoEvents();//图片缩放image = new Mat(image_path);int img_height = image.Rows;int img_width = image.Cols;Mat resize_image = new Mat();Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));int row = resize_image.Rows;int col = resize_image.Cols;float[] input_tensor_data = new float[1 * 3 * inpHeight * inpWidth];for (int c = 0; c < 3; c++){for (int i = 0; i < row; i++){for (int j = 0; j < col; j++){float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0 - mean[c]) / std[c]);}}}input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });float[] input_mask_data = new float[1 * 1 * inpHeight * inpWidth];for (int i = 0; i < input_mask_data.Length; i++){input_mask_data[i] = 0.0f;}mask_tensor = new DenseTensor<float>(input_mask_data, new[] { 1, 1, inpHeight, inpWidth });//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_rgb", input_tensor));input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_mask", mask_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;//将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();float[] pred_logits = results_onnxvalue[0].AsTensor<float>().ToArray();float[] pred_curves = results_onnxvalue[1].AsTensor<float>().ToArray();int logits_h = results_onnxvalue[0].AsTensor<float>().Dimensions[1];int logits_w = results_onnxvalue[0].AsTensor<float>().Dimensions[2];int curves_w = results_onnxvalue[1].AsTensor<float>().Dimensions[2];List<int> good_detections = new List<int>();List<List<OpenCvSharp.Point>> lanes = new List<List<OpenCvSharp.Point>>();for (int i = 0; i < logits_h; i++){float max_logits = -10000;int max_id = -1;for (int j = 0; j < logits_w; j++){float data = pred_logits[i * logits_w + j];if (data > max_logits){max_logits = data;max_id = j;}}if (max_id == 1){good_detections.Add(i);int index = i * curves_w;List<OpenCvSharp.Point> lane_points = new List<OpenCvSharp.Point>();for (int k = 0; k < len_log_space; k++){float y = pred_curves[0 + index] + log_space[k] * (pred_curves[1 + index] - pred_curves[0 + index]);float x = (float)(pred_curves[2 + index] / Math.Pow(y - pred_curves[3 + index], 2.0) + pred_curves[4 + index] / (y - pred_curves[3 + index]) + pred_curves[5 + index] + pred_curves[6 + index] * y - pred_curves[7 + index]);lane_points.Add(new OpenCvSharp.Point(x * img_width, y * img_height));}lanes.Add(lane_points);}}Mat result_image = image.Clone();//draw linesList<int> right_lane = new List<int>();List<int> left_lane = new List<int>();for (int i = 0; i < good_detections.Count; i++){if (good_detections[i] == 0){right_lane.Add(i);}if (good_detections[i] == 5){left_lane.Add(i);}}if (right_lane.Count() == left_lane.Count()){Mat lane_segment_img = result_image.Clone();List<OpenCvSharp.Point> points = new List<OpenCvSharp.Point>();points.AddRange(lanes.First());points.Reverse();points.AddRange(lanes[left_lane[0]]);Cv2.FillConvexPoly(lane_segment_img, points, new Scalar(0, 191, 255));Cv2.AddWeighted(result_image, 0.7, lane_segment_img, 0.3, 0, result_image);}for (int i = 0; i < lanes.Count(); i++){for (int j = 0; j < lanes[i].Count(); j++){Cv2.Circle(result_image, lanes[i][j], 3, lane_colors[good_detections[i]], -1);}}pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/141518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

适配器模式 rust和java的实现

文章目录 适配器模式介绍何时使用应用实例优点缺点使用场景 实现java实现rust 实现 rust代码仓库 适配器模式 适配器模式&#xff08;Adapter Pattern&#xff09;是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式&#xff0c;它结合了两个独立接口的功能…

【每日一题】区域和检索 - 数组可修改

文章目录 Tag题目来源解题思路方法一&#xff1a;分块方法二&#xff1a;线段树方法三&#xff1a;树状数组 写在最后 Tag 【树状数组】【线段树】【分块】【前缀和】【设计类】【2023-11-13】 题目来源 307. 区域和检索 - 数组可修改 解题思路 使用前缀和解决不行吗&#x…

centos利用find提权反弹shell

需要说明的是利用find命令进行提权的方式已经不存在了&#xff0c;因为Linux默认不会为find命令授予suid权限&#xff0c;这里只是刻意的制造出了一种存在提权的环境 首先我们先介绍一下find命令&#xff0c;find命令主要用来在Linux中查找文件使用&#xff0c;它可以进行最基础…

Brute Force

Brute Force "Brute Force"&#xff08;暴力破解&#xff09;指的是一种通过尝试所有可能的组合来获取访问、解密或破解信息的攻击方法。这种攻击方法通常是基于暴力和不断尝试的&#xff0c;不依赖漏洞或弱点。通常用于破解密码、破坏系统或获取未经授权的访问权限…

数据分析实战 | 逻辑回归——病例自动诊断分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 九、模型调参 十、模型预测 一、数据及分析对象 CSV文件——“bc_data.csv” 数据集链接&#xff1a;https://download.csdn.net/d…

MongoDB基础知识~

引入MongoDB&#xff1a; 在面对高并发&#xff0c;高效率存储和访问&#xff0c;高扩展性和高可用性等的需求下&#xff0c;我们之前所学习过的关系型数据库(MySql,sql server…)显得有点力不从心&#xff0c;而这些需求在我们的生活中也是随处可见的&#xff0c;例如在社交中…

JVM如何运行,揭秘Java虚拟机运行时数据区

目录 一、概述 二、程序计数器 三、虚拟机栈 四、本地方法栈 五、本地方法接口 六、堆 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;堆空间细分 七、方法区 一、概述 不同的JVM对于内存的划分方式和管理机制存在部分差异&#xff0c;后续针对HotSpot虚…

CSS特效007:绘制3D文字,类似PS效果

总第 007 篇文章&#xff0c; 查看专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花…

2023年数维杯国际大学生数学建模挑战赛A题

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 cs数模团队在数维杯前为大家提供了许多资料的内容呀&#xff0…

贪吃蛇和俄罗斯方块

贪吃蛇 一、创建新项目 创建一个新的项目&#xff0c;并命名。 创建一个名为images的文件夹用来存放游戏相关图片。 然后再在项目的src文件下创建一个com.xxx.view的包用来存放所有的图形界面类&#xff0c; 创建一个com.xxx.controller的包用来存放启动的入口类(控制类) …

重复性工作自动化解决方案——影刀

以前&#xff0c;影刀是一个邂逅的初见小工具&#xff0c;新奇在里头&#xff0c;踌躇在外头&#xff1b; 现在&#xff0c;影刀是一个稳定的职场贾维斯&#xff0c;高效在里头&#xff0c;悠闲在外头&#xff1b; 以后&#xff0c;影刀是一个潜力的知己老司机&#xff0c;有序…

2019年五一杯数学建模A题让标枪飞解题全过程文档及程序

2020年五一杯数学建模 A题 让标枪飞 原题再现 标枪的投掷是一项历史悠久的田径比赛项目。标枪投掷距离的远近受到运动员水平&#xff08;出手速度、出手角、初始攻角、出手高度、出手时标枪的初始俯仰角速度等&#xff09;&#xff0c;标枪的技术参数&#xff08;标枪的长度、…

网络运维Day14

监控概述 监控的目的 报告系统运行状况每一部分必须同时监控内容包括吞吐量、反应时间、使用率等提前发现问题进行服务器性能调整前&#xff0c;知道调整什么找出系统的瓶颈在什么地方 监控的资源类别 公开数据 Web、FTP、SSH、数据库等应用服务TCP或UDP端口 私有数据 CPU、内…

互联网Java工程师面试题·微服务篇·第三弹

目录 34、什么是端到端微服务测试&#xff1f; 35、Container 在微服务中的用途是什么&#xff1f; 36、什么是微服务架构中的 DRY&#xff1f; 37、什么是消费者驱动的合同&#xff08;CDC&#xff09;&#xff1f; 38、Web&#xff0c;RESTful API 在微服务中的作用是什…

Mysql-库的操作

1.创建数据库 CREATE DATABASE [IF NOT EXISTS] name name后可以加 CHARACTER SET 或者是 charsetname COLLATE collation_name &#xff08;mysql数据库不区分大小写&#xff09; 说明&#xff1a; name表示想创建的库的名字大写的表示关键字 [] 是可选项 CHARACTER SET…

python3+requests+unittest实战系列【二】

前言&#xff1a;上篇文章python3requestsunittest&#xff1a;接口自动化测试&#xff08;一&#xff09;已经介绍了基于unittest框架的实现接口自动化&#xff0c;但是也存在一些问题&#xff0c;比如最明显的测试数据和业务没有区分开&#xff0c;接口用例不便于管理等&…

CSS特效009:音频波纹加载律动

总第 009 篇文章&#xff0c; 查看专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花…

Python高级语法----Python C扩展与性能优化

文章目录 1. 编写Python C扩展模块示例代码编译和运行运行结果2. 利用Cython优化性能示例代码编译和运行运行结果3. Python性能分析工具示例代码分析结果1. 编写Python C扩展模块 Python C扩展模块允许你将C语言代码集成到Python程序中,以提高性能。这对于计算密集型任务特别…

物联网AI MicroPython学习之语法 bluetooth蓝牙

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; bluetooth 介绍 该模块为板上的蓝牙控制器提供了相关接口。目前支持低功耗蓝牙 (BLE)的Central&#xff08;中央&#xff09;, Peripheral&#xff08;外设&#xff09;, Broadcaster&#xff08;广播者&…

计算机视觉(CV)技术的优势和挑战

计算机视觉技术在很多领域具有很大的优势,例如: 自动化:计算机视觉技术可以帮助实现自动化生产和检测,省去了人力成本和时间成本。 准确性:计算机视觉技术可以提高生产和检测的准确性,降低了人工操作产生的误差。 速度:计算机视觉技术可以实现高速速度的生产和检测,提高…