数据分析实战 | 逻辑回归——病例自动诊断分析

目录

一、数据及分析对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

八、模型评价

九、模型调参

十、模型预测


一、数据及分析对象

CSV文件——“bc_data.csv”

数据集链接:https://download.csdn.net/download/m0_70452407/88524905

该数据集主要记录了569个病例的32个属性,主要属性/字段如下:

(1)ID:病例的ID。

(2)Diagnosis(诊断结果):M为恶性,B为良性。该数据集共包含357个良性病例和212个恶性病例。

(3)细胞核的10个特征值,包括radius(半径)、texture(纹理)、perimeter(周长)、面积(area)、平滑度(smoothness)、紧凑度(compactness)、凹面(concavity)、凹点(concave points)、对称性(symmetry)和分形维数(fractal dimension)等。同时,为上述10个特征值分别提供了3种统计量,分别为均值(mean)、标准差(standard error)和最大值(worst or largest)。

二、目的及分析任务

理解机器学习方法在数据分析中的应用——采用逻辑回归方法进行分类分析。

(1)数据读入。

(2)划分训练集和数据集,利用逻辑回归算法进行模型训练,分类分析。

(3)进行模型评价,调整模型参数。

(4)将调参后的模型进行模型预测,得出的结果与测试集结果进行对比分析,验证逻辑回归算法建模的有效性。

三、方法及工具

Python语言及scikit-learn包。

四、数据读入

导入所需的工具包:

import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import metrics

导入scikit-learn自带的数据集——威斯康星州乳腺癌数据集,这里采用的实现方式为调用sklearn.datasets中的load_breast_cancer()方法。

#数据读入
from sklearn.datasets import load_breast_cancer
breast_cancer=load_breast_cancer()

导入的威斯康星州乳腺癌数据集是字典数据,显示其字典的键为:

#显示数据集字典的键
print(breast_cancer.keys())
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])

输出结果中,'target'为分类目标,'DESCR'为数据集的完整性描述,'feature_names'为特征名称。

显示数据集的完整描述:

print(breast_cancer.DESCR)
.. _breast_cancer_dataset:Breast cancer wisconsin (diagnostic) dataset
--------------------------------------------**Data Set Characteristics:**:Number of Instances: 569:Number of Attributes: 30 numeric, predictive attributes and the class:Attribute Information:- radius (mean of distances from center to points on the perimeter)- texture (standard deviation of gray-scale values)- perimeter- area- smoothness (local variation in radius lengths)- compactness (perimeter^2 / area - 1.0)- concavity (severity of concave portions of the contour)- concave points (number of concave portions of the contour)- symmetry- fractal dimension ("coastline approximation" - 1)The mean, standard error, and "worst" or largest (mean of the threeworst/largest values) of these features were computed for each image,resulting in 30 features.  For instance, field 0 is Mean Radius, field10 is Radius SE, field 20 is Worst Radius.- class:- WDBC-Malignant- WDBC-Benign:Summary Statistics:===================================== ====== ======Min    Max===================================== ====== ======radius (mean):                        6.981  28.11texture (mean):                       9.71   39.28perimeter (mean):                     43.79  188.5area (mean):                          143.5  2501.0smoothness (mean):                    0.053  0.163compactness (mean):                   0.019  0.345concavity (mean):                     0.0    0.427concave points (mean):                0.0    0.201symmetry (mean):                      0.106  0.304fractal dimension (mean):             0.05   0.097radius (standard error):              0.112  2.873texture (standard error):             0.36   4.885perimeter (standard error):           0.757  21.98area (standard error):                6.802  542.2smoothness (standard error):          0.002  0.031compactness (standard error):         0.002  0.135concavity (standard error):           0.0    0.396concave points (standard error):      0.0    0.053symmetry (standard error):            0.008  0.079fractal dimension (standard error):   0.001  0.03radius (worst):                       7.93   36.04texture (worst):                      12.02  49.54perimeter (worst):                    50.41  251.2area (worst):                         185.2  4254.0smoothness (worst):                   0.071  0.223compactness (worst):                  0.027  1.058concavity (worst):                    0.0    1.252concave points (worst):               0.0    0.291symmetry (worst):                     0.156  0.664fractal dimension (worst):            0.055  0.208===================================== ====== ======:Missing Attribute Values: None:Class Distribution: 212 - Malignant, 357 - Benign:Creator:  Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian:Donor: Nick Street:Date: November, 1995This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
https://goo.gl/U2Uwz2Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass.  They describe
characteristics of the cell nuclei present in the image.Separating plane described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,
pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree.  Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.The actual linear program used to obtain the separating plane
in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992, 23-34].This database is also available through the UW CS ftp server:ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/.. topic:: References- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870,San Jose, CA, 1993.- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniquesto diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

 显示数据集的特征名称:

#数据集的特征名称
print(breast_cancer.feature_names)
['mean radius' 'mean texture' 'mean perimeter' 'mean area''mean smoothness' 'mean compactness' 'mean concavity''mean concave points' 'mean symmetry' 'mean fractal dimension''radius error' 'texture error' 'perimeter error' 'area error''smoothness error' 'compactness error' 'concavity error''concave points error' 'symmetry error' 'fractal dimension error''worst radius' 'worst texture' 'worst perimeter' 'worst area''worst smoothness' 'worst compactness' 'worst concavity''worst concave points' 'worst symmetry' 'worst fractal dimension']

显示数据形状:

#数据形状
print(breast_cancer.data.shape)
(569, 30)

 调用pandas包数据框(DataFrame),将数据(data)与回归目标(target)转化为数据框类型。

#将数据(data)与回归目标(target)转换为数据框类型
X=pd.DataFrame(breast_cancer.data,columns=breast_cancer.feature_names)
y=pd.DataFrame(breast_cancer.target,columns=['class'])

 将X,y数据框合并后,生成数据集df

#合并数据框
df=pd.concat([X,y],axis=1)
df

五、数据理解

查看数据基本信息:

#查看数据基本信息
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):#   Column                   Non-Null Count  Dtype  
---  ------                   --------------  -----  0   mean radius              569 non-null    float641   mean texture             569 non-null    float642   mean perimeter           569 non-null    float643   mean area                569 non-null    float644   mean smoothness          569 non-null    float645   mean compactness         569 non-null    float646   mean concavity           569 non-null    float647   mean concave points      569 non-null    float648   mean symmetry            569 non-null    float649   mean fractal dimension   569 non-null    float6410  radius error             569 non-null    float6411  texture error            569 non-null    float6412  perimeter error          569 non-null    float6413  area error               569 non-null    float6414  smoothness error         569 non-null    float6415  compactness error        569 non-null    float6416  concavity error          569 non-null    float6417  concave points error     569 non-null    float6418  symmetry error           569 non-null    float6419  fractal dimension error  569 non-null    float6420  worst radius             569 non-null    float6421  worst texture            569 non-null    float6422  worst perimeter          569 non-null    float6423  worst area               569 non-null    float6424  worst smoothness         569 non-null    float6425  worst compactness        569 non-null    float6426  worst concavity          569 non-null    float6427  worst concave points     569 non-null    float6428  worst symmetry           569 non-null    float6429  worst fractal dimension  569 non-null    float6430  class                    569 non-null    int32  
dtypes: float64(30), int32(1)
memory usage: 135.7 KB

查看描述性统计信息:

#查看描述新统计信息
df.describe()

六、数据准备

利用sklearn.model_selection的train_test_split()方法划分训练集和测试集,固定random_state为42,用30%的数据测试,70%的数据训练。

#划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42)
X_test

七、模型训练

调用默认参数的LogisticRegression在训练集上进行模型训练。

#模型训练
model=LogisticRegression(C=1.0,class_weight=None,dual=False,fit_intercept=True,intercept_scaling=1,max_iter=100,multi_class='ovr',n_jobs=1,penalty='l2',random_state=None,solver='liblinear',tol=0.0001,verbose=0,warm_start=False)
model.fit(X_train,y_train)
LogisticRegression(multi_class='ovr', n_jobs=1, solver='liblinear')

 该输出结果显示了模型的训练结果。选择逻辑回归模型参数的默认值进行训练。选择L2正则项,C=1.0控制正则化的强度。"fit_intercept=True,intercept_scaling=1"表示增加截距缩放,减少正则化对综合特征权重的影响。"class_weight=None"表示所有类都有权重。"solver=liblinear"时(在最优化问题时使用"liblinear"算法)。max_iter=100表示求解器收敛所采用的最大迭代次数为100。multi_class="ovr"表示每个标签都适合一个二进制问题。n_jobs表示在类上并行时使用的CPU核心数量。当warm_start设置为True时,重用前一个调用的解决方案以适应初始化,否则,只需删除前一个解决方案。

显示预测结果:

#默认参数模型预测结果y_pred
y_pred=model.predict(X_test)
y_pred
array([1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1,1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0,1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1])

八、模型评价

利用混淆矩阵分类算法的指标进行模型的分类效果评价。

#混淆矩阵(分类算法的重要评估指标)
matrix=metrics.confusion_matrix(y_test,y_pred)
matrix
array([[ 59,   4],[  2, 106]], dtype=int64)

 利用准确度(Accuracy)、精度(Precision)这两项分类指标进行模型的分类效果评价。

#分类评价指标——准确度(Accuracy)
print("Accuracy:",metrics.accuracy_score(y_test,y_pred))#分类评价指标——精度(Precision)
print("Precision:",metrics.precision_score(y_test,y_pred))
Accuracy: 0.9649122807017544
Precision: 0.9636363636363636

九、模型调参

设置GridSearchCV函数的param_grid、cv参数值。为了防止过拟合现象的出现,通过参数C控制正则化程度,C值越大,正则化越弱。一般情况下,C增大(正则化程度弱),模型的准确性在训练集和测试集上都在提升(对损失函数的惩罚减弱),特征维度更多,学习能力更强,过拟合的风险也更高。L1和L2两项正则化项对目标函数的影响不同,选择的求解模型惨啊书的梯度下降法也不同。

#以C、penalty参数和值设置字典列表param_grid。
#设置cv参数值为5
param_grid={'C':[0.001,0.01,0.1,1,10,20,50,100],'penalty':["l1","l2"]}
n_folds=5

调用GridSearchCV函数,进行5折交叉验证,得出模型最优参数:

#调用GridSearchCV函数,进行5折交叉验证,对估计器LogisticRegression()的指定参数值param_grid进行详尽搜索,得到最终的最优模型参数
from sklearn.model_selection import GridSearchCV
estimator=GridSearchCV(LogisticRegression(solver='liblinear'),param_grid,cv=n_folds)
estimator.fit(X_train,y_train)
GridSearchCV(cv=5, estimator=LogisticRegression(solver='liblinear'),param_grid={'C': [0.001, 0.01, 0.1, 1, 10, 20, 50, 100],'penalty': ['l1', 'l2']})

该输出结果显示了调用GridSearchCV()方法对估计器的指定参数值进行详尽搜索。

利用best_estimator_属性,得到通过搜索选择的最高分(或最小损失的估计量):

estimator.best_estimator_
LogisticRegression(C=50, penalty='l1', solver='liblinear')

 该输出结果显示了最优的模型参数为C=50,penalty="l1"

十、模型预测

调参后的模型训练:

#调参后的模型训练
model1=LogisticRegression(C=50,class_weight=None,dual=False,fit_intercept=True,intercept_scaling=1,max_iter=100,multi_class='ovr',n_jobs=1,penalty='l1',random_state=None,solver='liblinear',tol=0.0001,verbose=0,warm_start=False)
model1.fit(X_train,y_train)
LogisticRegression(C=50, multi_class='ovr', n_jobs=1, penalty='l1',solver='liblinear')

 调参后的模型预测:

#调参后的模型预测
y_pred1=model1.predict(X_test)
y_pred1
array([1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1,1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0,1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1])

调参后的模型混淆矩阵结果:

#调参后的模型混淆矩阵结果
matrix1=metrics.confusion_matrix(y_test,y_pred1)
matrix1
array([[ 62,   1],[  3, 105]], dtype=int64)

 调参后的模型准确度、精度分类指标评价结果:

#调参后的额模型准确度、精度分类指标评价结果
print("Accuracy1:",metrics.accuracy_score(y_test,y_pred1))
print("Precision1:",metrics.precision_score(y_test,y_pred1))
Accuracy1: 0.9766081871345029
Precision1: 0.9905660377358491

该输出结果显示了调参后的模型分类指标准确度(Accuracy)、精度(Precision)分类指标值。通过与之前未调参的模型分类效果进行对比,可以发现准确度(Accuracy)、精度(Precision)值提升,混淆矩阵得出的结果也更好,分类效果显著提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/141511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MongoDB基础知识~

引入MongoDB&#xff1a; 在面对高并发&#xff0c;高效率存储和访问&#xff0c;高扩展性和高可用性等的需求下&#xff0c;我们之前所学习过的关系型数据库(MySql,sql server…)显得有点力不从心&#xff0c;而这些需求在我们的生活中也是随处可见的&#xff0c;例如在社交中…

JVM如何运行,揭秘Java虚拟机运行时数据区

目录 一、概述 二、程序计数器 三、虚拟机栈 四、本地方法栈 五、本地方法接口 六、堆 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;堆空间细分 七、方法区 一、概述 不同的JVM对于内存的划分方式和管理机制存在部分差异&#xff0c;后续针对HotSpot虚…

CSS特效007:绘制3D文字,类似PS效果

总第 007 篇文章&#xff0c; 查看专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花…

2023年数维杯国际大学生数学建模挑战赛A题

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 cs数模团队在数维杯前为大家提供了许多资料的内容呀&#xff0…

贪吃蛇和俄罗斯方块

贪吃蛇 一、创建新项目 创建一个新的项目&#xff0c;并命名。 创建一个名为images的文件夹用来存放游戏相关图片。 然后再在项目的src文件下创建一个com.xxx.view的包用来存放所有的图形界面类&#xff0c; 创建一个com.xxx.controller的包用来存放启动的入口类(控制类) …

重复性工作自动化解决方案——影刀

以前&#xff0c;影刀是一个邂逅的初见小工具&#xff0c;新奇在里头&#xff0c;踌躇在外头&#xff1b; 现在&#xff0c;影刀是一个稳定的职场贾维斯&#xff0c;高效在里头&#xff0c;悠闲在外头&#xff1b; 以后&#xff0c;影刀是一个潜力的知己老司机&#xff0c;有序…

2019年五一杯数学建模A题让标枪飞解题全过程文档及程序

2020年五一杯数学建模 A题 让标枪飞 原题再现 标枪的投掷是一项历史悠久的田径比赛项目。标枪投掷距离的远近受到运动员水平&#xff08;出手速度、出手角、初始攻角、出手高度、出手时标枪的初始俯仰角速度等&#xff09;&#xff0c;标枪的技术参数&#xff08;标枪的长度、…

网络运维Day14

监控概述 监控的目的 报告系统运行状况每一部分必须同时监控内容包括吞吐量、反应时间、使用率等提前发现问题进行服务器性能调整前&#xff0c;知道调整什么找出系统的瓶颈在什么地方 监控的资源类别 公开数据 Web、FTP、SSH、数据库等应用服务TCP或UDP端口 私有数据 CPU、内…

互联网Java工程师面试题·微服务篇·第三弹

目录 34、什么是端到端微服务测试&#xff1f; 35、Container 在微服务中的用途是什么&#xff1f; 36、什么是微服务架构中的 DRY&#xff1f; 37、什么是消费者驱动的合同&#xff08;CDC&#xff09;&#xff1f; 38、Web&#xff0c;RESTful API 在微服务中的作用是什…

Mysql-库的操作

1.创建数据库 CREATE DATABASE [IF NOT EXISTS] name name后可以加 CHARACTER SET 或者是 charsetname COLLATE collation_name &#xff08;mysql数据库不区分大小写&#xff09; 说明&#xff1a; name表示想创建的库的名字大写的表示关键字 [] 是可选项 CHARACTER SET…

python3+requests+unittest实战系列【二】

前言&#xff1a;上篇文章python3requestsunittest&#xff1a;接口自动化测试&#xff08;一&#xff09;已经介绍了基于unittest框架的实现接口自动化&#xff0c;但是也存在一些问题&#xff0c;比如最明显的测试数据和业务没有区分开&#xff0c;接口用例不便于管理等&…

CSS特效009:音频波纹加载律动

总第 009 篇文章&#xff0c; 查看专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花…

Python高级语法----Python C扩展与性能优化

文章目录 1. 编写Python C扩展模块示例代码编译和运行运行结果2. 利用Cython优化性能示例代码编译和运行运行结果3. Python性能分析工具示例代码分析结果1. 编写Python C扩展模块 Python C扩展模块允许你将C语言代码集成到Python程序中,以提高性能。这对于计算密集型任务特别…

物联网AI MicroPython学习之语法 bluetooth蓝牙

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; bluetooth 介绍 该模块为板上的蓝牙控制器提供了相关接口。目前支持低功耗蓝牙 (BLE)的Central&#xff08;中央&#xff09;, Peripheral&#xff08;外设&#xff09;, Broadcaster&#xff08;广播者&…

计算机视觉(CV)技术的优势和挑战

计算机视觉技术在很多领域具有很大的优势,例如: 自动化:计算机视觉技术可以帮助实现自动化生产和检测,省去了人力成本和时间成本。 准确性:计算机视觉技术可以提高生产和检测的准确性,降低了人工操作产生的误差。 速度:计算机视觉技术可以实现高速速度的生产和检测,提高…

深度学习 机器视觉 人脸识别系统 - opencv python 计算机竞赛

文章目录 0 前言1 机器学习-人脸识别过程人脸检测人脸对其人脸特征向量化人脸识别 2 深度学习-人脸识别过程人脸检测人脸识别Metric Larning 3 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 人脸识别系统 该项目…

从头开始的卷积神经网络

VGG-16 卷积神经网络。来源&#xff1a;LearnOpenCV 参考资料&#xff1a;这篇文章可以在 Kaggle Notebook &#x1f9e0; Convolutional Neural Network From Scratch上更好地阅读。路易斯费尔南多托雷斯 一、说明 本文详细介绍在tf2.0上&#xff0c;使用ceras实现基本的神经…

C++字典树算法:找出强数对的最大异或值 II

涉及知识点 数学 字典树 题目 给你一个下标从 0 开始的整数数组 nums 。如果一对整数 x 和 y 满足以下条件&#xff0c;则称其为 强数对 &#xff1a; |x - y| < min(x, y) 你需要从 nums 中选出两个整数&#xff0c;且满足&#xff1a;这两个整数可以形成一个强数对&…

mysql主从复制-使用心得

文章目录 前言环境配置主库从库 STATEMENTbinloggtidlog-errorDistSQL总结 前言 mysql 主从复制使用感受&#xff0c;遇到一些问题的整理&#xff0c;也总结了一些排查问题技巧。 环境 mysql5.7 配置 附&#xff1a;千万级数据快速插入配置可以参考&#xff1a;mysql千万数…

HarmonyOS应用开发者高级认证(88分答案)

看好选择题&#xff0c;每个2分多答对2个刚好88分&#xff0c;祝你顺利。 其它帮扶选择题。 一、判断 只要使用端云一体化的云端资源就需要支付费用&#xff08;错&#xff09;所有使用Component修饰的自定义组件都支持onPageShow&#xff0c;onBackPress和onPageHide生命周期…