动态规划-构建乘积数组

**

描述

给定一个数组 A[0,1,…,n-1] ,请构建一个数组 B[0,1,…,n-1] ,其中 B 的元素 B[i]=A[0]A[1]…*A[i-1]A[i+1]…*A[n-1](除 A[i] 以外的全部元素的的乘积)。程序中不能使用除法。(注意:规定 B[0] = A[1] * A[2] * … * A[n-1],B[n-1] = A[0] * A[1] * … * A[n-2])
对于 A 长度为 1 的情况,B 无意义,故而无法构建,用例中不包括这种情况。

数据范围:1≤n≤10 ,数组中元素满足 ∣val∣≤10
示例1
输入:
[1,2,3,4,5]
返回值:
[120,60,40,30,24]
示例2
输入:
[100,50]
复制
返回值:
[50,100]

题目分析

这题算个easy的题,原因是它的暴力解法很简单。如果要求时间复杂度是o(n),我觉得可以算作一个mediem题。题目描述的很清晰,没什么弯弯绕绕,就是要我们输出一个给定数组乘积的数组,数组的每一项都分别少乘一个数。

题解

暴力解法

暴力解法很简单,直接根据题意,每次乘的时候少乘一个数,2次for循环就能解决问题,下面直接上代码。

import java.util.*;
public class Solution {public int[] multiply (int[] A) {int[] b= new int[A.length];for(int i=0;i<A.length;i++){int res = 1;for(int j=0;j<A.length;j++){if(i==j) continue;res = res*A[j];}b[i] = res;}return b;}
}

暴力解法不做过度解释,相信大家都能看懂,同时它的时间复杂度也达到了惊人的o(n2)

两次遍历

为了降低暴力解法的时间复杂度,我们必须得有利用空间来置换时间的想法。我们可以把数组B的结果用一个表格来列举出来,如下图:
B数组结果
我们可以先忽略掉B[n]这一行,直接看带有A的举证
矩阵A
我们可以看到,这个矩阵以1为分割线,将矩阵分为了上下两个三角形。而B的结果就是这个矩阵每一行的乘积。
下三角用连乘可以很容求得,上三角,从下向上其实也是连乘。

因此我们的思路就很清晰了,先算下三角中的连乘,即我们先算出B[n]中的一部分,然后倒过来按上三角中的分布规律,把另一部分也乘进去,两次遍历,结果就出来了。

接下来我们直接上代码:

import java.util.*;
public class Solution {public int[] multiply (int[] A) {int[] b= new int[A.length];b[0] = 1;//第一次遍历算上三角,也就是对角线下面的三角形,我们根据规律可以看出b[0]的值直//接就是1,后面b[i]的值就是上一层b[i-1]的值乘上A[i-1]即可。for(int i=1;i<A.length;i++){b[i] = A[i-1]*b[i-1];}//第二次遍历,我们再把下三角累乘出来,分别跟上面的b[i]做乘积,这样每层的结果就//出来了,同时我们需要一个temp临时变量来记录每次累乘的结果int temp = 1;for(int i=A.length-1;i>=0;i--){//每次累乘的结果乘上b[i]就是那一行的值咯b[i] = b[i]*temp;/再进行下一次累乘temp = temp*A[i];  }return b;}
}

动态规划

说到动态规划,我们肯定会想到动态规划的三个步骤
1.确定状态
2.定义状态转移方程
3.求得最优解

其实上面两次遍历的思想我们稍微进行转变一下,就可以变成动态规划了,我们把第一次为了计算上三角而遍历累乘的结果利用动态规划数组进行存储起来,然后再反向对动态规划数组的结果和下三角逐行相乘即可得到结果数组。

1.确定状态

我们利用动态规划主要是为了保存上三角的值,那么dp[0]=1;

2.定义状态转移方程

状态转移方程肯定就是三角下一行的值等于上一行的值乘以A数组上一行对应下标的值,也就是dp数组第i行的值等dp数组第i-1行的值乘上A数组第i-1的下标的值。
转换成代码形式就是
dp[i] = dp[i-1]*A[i-1]

3.求得最优解

得到上三角的值,我们再反向对动态规划数组的结果和下三角逐行相乘即可得到结果数组。
其实我们只需要将两次遍历的代码中B数组用dp数组代替就可以了,代码其实可以是一摸一样的,是不是很容易。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/141370.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3568平台开发系列讲解(Linux系统篇)Linux内核定时器详解

🚀返回专栏总目录 文章目录 一、系统节拍率二、内核定时器简介三、内核定时器API四、延时函数沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 Linux 内核中有大量的函数需要时间管理,比如周期性的调度程序、延时程序、对于我们驱动编写者来说最常用的定时器。硬件定…

win11下安装odoo17(conda python11)

win11下安装odoo17 odoo17发行了&#xff0c;据说&#xff0c;UI做了很大改进&#xff0c;今天有空&#xff0c;体验一下 打开官方仓库&#xff1a; https://github.com/odoo/odoo 默认的版本已经变成17了 打开odoo/odoo/init.py&#xff0c;发现对python版本的要求也提高了…

GCN代码讲解

这里写的有点抽象&#xff0c;所以具体的可以参照下面代码块中的注释&#xff1a; def load_data(path"../data/cora/", dataset"cora"):"""Load citation network dataset (cora only for now)"""print(Loading {} datase…

超越任务调度的极致:初探分布式定时任务 XXL-JOB 分片广播

XXL-JOB 是一个分布式任务调度平台&#xff0c;支持分片任务执行。 1. 依赖引入 在项目中引入 XXL-JOB 的相关依赖。通常&#xff0c;你需要在项目的 pom.xml 文件中添加如下依赖&#xff1a; <dependency><groupId>com.xuxueli</groupId><artifactId&…

字符设备驱动基础框架

一、总体框架 1.Linux字符设备驱动工作原理图 2.驱动使用端 3.驱动实现端 二、各部分详解 1.VFS层 1) inode结构体 在Unix/Linux操作系统中&#xff0c;每个文件都由一个inode&#xff08;索引节点&#xff09;来索引。inode是特殊的磁盘块&#xff0c;它们在文件系统创建时…

windows系统用于 SDN 的软件负载均衡器 (SLB)

适用于&#xff1a;Azure Stack HCI 版本 22H2 和 21H2&#xff1b;Windows Server 2022、Windows Server 2019、Windows Server 2016 软件负载均衡器包括哪些内容&#xff1f; 软件负载均衡器提供以下功能&#xff1a; 适用于北/南和东/西 TCP/UDP 流量的第 4 层 (L4) 负载均…

聚观早报 |京东11.11公布成绩单;2023数字科技生态大会

【聚观365】11月13日消息 京东11.11公布成绩单 2023数字科技生态大会 TikTok深受英国中小企业青睐 周鸿祎称大模型2年内可“进”智能汽车 双11全国快递业务量达 6.39 亿件 京东11.11公布成绩单 京东11.11公布成绩单&#xff1a;截至11月11日晚23:59&#xff0c;2023年京东…

Docker 中的端口

Docker 中的端口 0.0.0.0:8080->80/tcp &#xff0c;主机&#xff08;即运行 Docker 的机器&#xff09;监听8080端口&#xff0c;如果有请求转发到容器的 80 端口上去。 详细解释一下&#xff1a; 0.0.0.0:8080->80/tcp &#xff1a;这是一个端口映射规则。 0.0.0.0:80…

【中间件篇-Redis缓存数据库06】Redis主从复制/哨兵 高并发高可用

Redis高并发高可用 复制 在分布式系统中为了解决单点问题&#xff0c;通常会把数据复制多个副本部署到其他机器&#xff0c;满足故障恢复和负载均衡等需求。Redis也是如此&#xff0c;它为我们提供了复制功能&#xff0c;实现了相同数据的多个Redis 副本。复制功能是高可用Re…

SparkSQL之Analyzed LogicalPlan生成过程

经过AstBuilder的处理&#xff0c;得到了Unresolved LogicalPlan。该逻辑算子树中未被解析的有UnresolvedRelation和UnresolvedAttribute两种对象。Analyzer所起到的主要作用就是将这两种节点或表达式解析成有类型的&#xff08;Typed&#xff09;对象。在此过程中&#xff0c;…

打开word文档报错,提示HRESULT 0x80004005 位置: 部分: /word/comments.xml,行: 0,列: 0

某用户遇到这样一个奇怪的问题&#xff0c;就是回复完word的批注后&#xff0c;保存文档再打开就会报错&#xff0c;提示很抱歉&#xff0c;无法打开XXX&#xff0c;因为内容有问题。&#xff0c;详细信息提示HRESULT 0x80004005 位置: 部分: /word/comments.xml,行: 0,列: 0 c…

java学习part02一些特性

17-Java语言概述-Java语言的特点和JVM的功能_哔哩哔哩_bilibili 1.java优点 跨平台性 在jvm上运行 2.jvm 2.1实现跨平台性 不需要对每一种指令集编写编译器&#xff0c;只需要针对jvm编程&#xff0c;jvm会自动转换 2.2内存回收 内存溢出&#xff1a;用的内存太多已经占满了&…

No199.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Seaborn数据可视化综合应用Basemap和Seaborn在线闯关_头歌实践教学平台

Seaborn数据可视化综合应用Basemap和Seaborn 第1关 Seaborn第2关 Seaborn图形介绍第3关 Basemap 第1关 Seaborn 任务描述 本关任务&#xff1a;编写一个绘制每个月销售总额的折线图。 编程要求 本关的编程任务是补全右侧上部代码编辑区内的相应代码&#xff0c;根据输入文件路…

微信小程序用户隐私API

用户隐私保护 由于用户隐私保护的政策执行&#xff0c;我们在调用涉及到用户隐私的API时&#xff0c;未更新用户隐私保护协议是无法直接调用的&#xff0c;小程序会默认判断是否更新用户隐私保护 &#xff0c;并根据用户隐私保护中的协议来判断是否可以调用对应的API&#xff…

基于flask+bootstrap4实现的注重创作的轻博客系统项目源码

一个注重创作的轻博客系统 作为一名技术人员一定要有自己的博客&#xff0c;用来记录平时技术上遇到的问题&#xff0c;把技术分享出去就像滚雪球一样会越來越大&#xff0c;于是我在何三博客的基础上开发了[l4blog]&#xff0c;一个使用python开发的轻量博客系统&#xff0c;…

rabbitMq创建交换机,以及路由键绑定队列教程

创建交换机&#xff1a; 创建队列&#xff1a; 创建路由&#xff0c;绑定到交换机&#xff1a; 补充&#xff1a; 创建新用户后&#xff0c;记得点进用户中&#xff0c;那两个set都点击一下&#xff1b; 还有配置代码连接的时候&#xff0c;连的端口为5672&#xff0c;可不…

STM32与RTOS的整合:实时操作系统在嵌入式开发中的应用

随着各种嵌入式系统应用的日益复杂和对实时性要求的提高&#xff0c;使用实时操作系统&#xff08;RTOS&#xff09;成为嵌入式开发中的一种重要选择。STM32微控制器作为一种强大的嵌入式处理器&#xff0c;与各种RTOS相结合&#xff0c;能够提供更高效、可靠并且易于维护的系统…

eNSP-打开华为USG6000V1防火墙web管理页面方法

一、本地打开防火墙web管理页面 1.先在ensp中启动USG6000V1防火墙&#xff0c;启动后&#xff0c;需要输入原始username和password&#xff08;username&#xff1a;admin&#xff0c;password&#xff1a;Admin123&#xff09;&#xff0c;并修改原始密码后&#xff0c;才能配…

【中间件篇-Redis缓存数据库08】Redis设计、实现、redisobject对象设计、多线程、缓存淘汰算法

Redis的设计、实现 数据结构和内部编码 type命令实际返回的就是当前键的数据结构类型&#xff0c;它们分别是&#xff1a;string(字符串)hash(哈希)、list(列表)、set(集合)、zset (有序集合)&#xff0c;但这些只是Redis对外的数据结构。 实际上每种数据结构都有自己底层的…