适用于4D毫米波雷达的目标矩形框聚类

目录

一、前言

二、点云聚类分割

三、基于方位搜索L型拟合

四、评价准则之面积最小化

五、评价准则之贴合最大化

六、评价准则之方差最小化


 

3da15d2e63e047c9a39ad39831be0075.png

一、前言

对于多线束雷达可以获取目标物体更全面的面貌,在道路中前向或角雷达可能无法获取目标车矩形框但可以扫到两边或者一边,在做目标方向估计时这些信息至关重要。看到一篇文章不错的思路,拿来记录借鉴下。

整体算法:
Step1: 将距离点按照预先设定的距离阈值进行聚类划分簇
Step2:基于方位搜索+特定准则进行L型拟合,得出4边参数
2.1 矩形面积最小化
2.2 点到边靠近最大化
2.3 点到边方差最小化

二、点云聚类分割

对于所有点,在距离r一点内找到它的相邻点,将相邻点设置为未检测,对未检测点继续找到距离r内的任何一个点,把邻近点放在这个簇中直到集群不再增长。

afe7f40da3d2461b9b171fd9a93dd7cd.png

def _adoptive_range_segmentation(self, ox, oy):# Setup initial clustersegment_list = []for i, _ in enumerate(ox):c = set()r = self.R0 + self.Rd * np.linalg.norm([ox[i], oy[i]])for j, _ in enumerate(ox):d = np.hypot(ox[i] - ox[j], oy[i] - oy[j])if d <= r:c.add(j)segment_list.append(c)# Merge clusterwhile True:no_change = Truefor (c1, c2) in list(itertools.permutations(range(len(segment_list)), 2)):if segment_list[c1] & segment_list[c2]:segment_list[c1] = (segment_list[c1] | segment_list.pop(c2))no_change = Falsebreakif no_change:breakreturn segment_list

 

三、基于方位搜索L型拟合

80db7156348e427c8728232643489652.png

dec3357dea4545cc8dba368502134009.png

step2:基于方位搜索的L 型拟合

遍历矩形的所有可能方向;在每次迭代中,可以找到一个该方向并包含所有扫描点的矩形;进一步可以得到所有点到矩形四条边的距离,并根据这些距离将点分为P和Q,并计算相应的平方误差作为(1)中的目标函数;在迭代所有方向并获得所有相应的平方误差后,寻找实现最小平方误差的最优方向,并根据该方向拟合矩形

22c4e7b4cc9e40dcacb79cd1621fee38.png

def _rectangle_search(self, x, y):xy = np.array([x, y]).Td_theta = np.deg2rad(self.d_theta_deg_for_search)min_cost = (-float('inf'), None)for theta in np.arange(0.0, np.pi / 2.0 - d_theta, d_theta):c = xy @ rot_mat_2d(theta)c1 = c[:, 0]c2 = c[:, 1]# Select criteriacost = 0.0if self.criteria == self.Criteria.AREA:cost = self._calc_area_criterion(c1, c2)elif self.criteria == self.Criteria.CLOSENESS:cost = self._calc_closeness_criterion(c1, c2)elif self.criteria == self.Criteria.VARIANCE:cost = self._calc_variance_criterion(c1, c2)if min_cost[0] < cost:min_cost = (cost, theta)# calc best rectanglesin_s = np.sin(min_cost[1])cos_s = np.cos(min_cost[1])c1_s = xy @ np.array([cos_s, sin_s]).Tc2_s = xy @ np.array([-sin_s, cos_s]).Trect = RectangleData()rect.a[0] = cos_srect.b[0] = sin_srect.c[0] = min(c1_s)rect.a[1] = -sin_srect.b[1] = cos_srect.c[1] = min(c2_s)rect.a[2] = cos_srect.b[2] = sin_srect.c[2] = max(c1_s)rect.a[3] = -sin_srect.b[3] = cos_srect.c[3] = max(c2_s)return rect

 

四、评价准则之面积最小化

a1cfde486c4943778a0e82a655695eb8.png

def _calc_area_criterion(c1, c2):c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2)alpha = -(c1_max - c1_min) * (c2_max - c2_min)return alpha

 

五、评价准则之贴合最大化

f211f7c1262c4bf58064bb454ff0e3c4.png

def _calc_closeness_criterion(self, c1, c2):c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2)# Vectorizationd1 = np.minimum(c1_max - c1, c1 - c1_min)d2 = np.minimum(c2_max - c2, c2 - c2_min)d = np.maximum(np.minimum(d1, d2), self.min_dist_of_closeness_criteria)beta = (1.0 / d).sum()return beta

六、评价准则之方差最小化

0d70e1efa8b144a7b8e136647ddb8ed3.png

def _calc_variance_criterion(c1, c2):c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2)# Vectorizationd1 = np.minimum(c1_max - c1, c1 - c1_min)d2 = np.minimum(c2_max - c2, c2 - c2_min)e1 = d1[d1 < d2]e2 = d2[d1 >= d2]v1 = - np.var(e1) if len(e1) > 0 else 0.v2 = - np.var(e2) if len(e2) > 0 else 0.gamma = v1 + v2return gamma

 

Result:

1fb1bca4ecd647febd4ef8a1b9b25d69.png

 

 

 

参考:《Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners》

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138763.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

物联网AI MicroPython学习之语法uzlib解压缩

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; uzlib 介绍 uzlib 模块解压缩用DEFLATE算法压缩的二进制数据 &#xff08;通常在zlib库和gzip存档器中使用&#xff09;&#xff0c;压缩功能尚未实现。 注意&#xff1a;解压缩前&#xff0c;应检查模块内可…

力扣字符串--总结篇

前言 字符串学了三天&#xff0c;七道题。初窥kmp&#xff0c;已经感受到算法的博大精深了。 内容 对字符串的操作可以归结为以下几类&#xff1a; 字符串的比较、连接操作&#xff08;不同编程语言实现方式有所不同&#xff09;&#xff1b; 涉及子串的操作&#xff0c;比…

Unity Mirror学习(一) SyncVars特性使用

官网中所说的网络对象&#xff0c;指的是挂了 NetworkIdentity组件的对象 官网中所说的玩家对象&#xff0c;指的是NetworkManager脚本上的PlayerPrefab预制体 这个概念对阅读官网文档很重要&#xff0c;我刚开始并不理解&#xff0c;走了歪路 SyncVars&#xff08;同步变量&a…

【C++笔记】优先级队列priority_queue的模拟实现

【C笔记】优先级队列priority_queue的模拟实现 一、优先级队列的介绍与使用方式1.1、优先级队列介绍1.2、优先级队列的常见使用 二、优先级队列的模拟实现1.0、仿函数的介绍1.1、构造函数1.2、优先级队列的插入push1.3、优先级队列的删除(删除堆顶元素)1.4、获取堆顶元素1.5、判…

自然语言处理(一):RNN

「循环神经网络」&#xff08;Recurrent Neural Network&#xff0c;RNN&#xff09;是一个非常经典的面向序列的模型&#xff0c;可以对自然语言句子或是其他时序信号进行建模。进一步讲&#xff0c;它只有一个物理RNN单元&#xff0c;但是这个RNN单元可以按照时间步骤进行展开…

classification_report分类报告的含义

classification_report分类报告 基础知识混淆矩阵&#xff08;Confusion Matrix&#xff09;TP、TN、FP、FN精度&#xff08;Precision&#xff09;准确率&#xff08;Accuracy&#xff09;召回率&#xff08;Recall&#xff09;F1分数&#xff08;F1-score&#xff09; classi…

管理员模式运行cmd或则bat文件的时候,出现路径错误的问题

最近在使用Comfyui, 不清楚啥原因&#xff0c;有时候Git无法访问&#xff0c;有时候文件夹无法访问的。就想把它的运行bat命令直接用 管理员模式运行&#xff0c;给到最高的权限&#xff0c;试试。但就这么简单的问题&#xff0c;搜了半天&#xff0c;都是一大堆不靠谱的教程&a…

大数据毕业设计选题推荐-污水处理大数据平台-Hadoop-Spark-Hive

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

selenium+python做web端自动化测试框架实战

最近受到万点暴击&#xff0c;由于公司业务出现问题&#xff0c;工作任务没那么繁重&#xff0c;有时间摸索seleniumpython自动化测试&#xff0c;结合网上查到的资料自己编写出适合web自动化测试的框架&#xff0c;由于本人也是刚刚开始学习python&#xff0c;这套自动化框架目…

数字马力笔试面试复盘

笔试——10月9日19&#xff1a;00 单选&#xff1a;30题 16.如何获取AJAX 请求的响应状态码? A通过AJAX对象的 statusCode 属性获取 B通过AJAX对象的responseText 属性获取C通过AJAX对象的status 属性获取 D通过AJAX对象的responseCode属性获取 答案&#xff1a;可以通过AJAX…

osg点云加载与渲染

目录 效果 laslib 关键代码 完整代码 效果 las点云读取使用了laslib这个库。 laslib 关键代码 {// 这里演示读取一个 .txt 点云文件const char* lasfile path.c_str();std::ifstream ifs;ifs.open(lasfile, std::ios::in | std::ios::binary);liblas::ReaderFactory f;libl…

Spring Cloud学习(三)【Nacos注册中心】

文章目录 认识 NacosNacos 安装使用 Nacos 完成服务注册Nacos 服务分级存储模型集群负载均衡策略 NacosRule根据权重负载均衡Nacos 环境隔离&#xff08;命名空间&#xff09;Nacos 和 Eureka 的区别 认识 Nacos Nacos 是阿里巴巴的产品&#xff0c;现在是 SpringCloud 中的一…

Azure - 机器学习:自动化机器学习中计算机视觉任务的超参数

Azure Machine Learning借助对计算机视觉任务的支持&#xff0c;可以控制模型算法和扫描超参数。 这些模型算法和超参数将作为参数空间传入以进行扫描。 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济…

【C++入门】构造函数析构函数

目录 前言 1. 类的默认成员函数 2. 构造函数 2.1 什么是构造函数 2.2 构造函数的特性 3. 析构函数 3.1 什么是析构函数 3.2 析构函数的特性 前言 前边我们已经了解了类和对像的基本概念&#xff0c;今天我们将继续深入了解类。类有6个默认成员函数&#xff0c;即使类中什么都…

C#开发的OpenRA游戏之世界存在的属性CombatDebugOverlay(3)

C#开发的OpenRA游戏之世界存在的属性CombatDebugOverlay(3) 这次来分析CombatDebugOverlay属性,这个属性只有在调试游戏的时候才会使用。当你设置这个属性的时候,就可以看到如下图的结果: 可以看到物品的周边都有一个圆圈,以及有一些十字的点位标志。 那些十字表示的点…

Python实现局部二进制算法(LBP)

1.介绍 局部二进制算法是一种用于获取图像纹理的算法。这算法可以应用于人脸识别、纹理分类、工业检测、遥感图像分析、动态纹理识别等领域。 2.示例 """ 局部二进制算法&#xff0c;计算图像纹理特征 """ import cv2 import numpy as np imp…

小程序游戏对接广告收益微信小游戏抖音游戏软件

小程序游戏对接广告是一种常见的游戏开发模式&#xff0c;开发者可以通过在游戏中嵌入广告来获取收益。以下是一些与小程序游戏对接广告收益相关的关键信息&#xff1a; 小程序游戏广告平台选择&#xff1a; 选择适合你的小程序游戏的广告平台非常重要。不同的平台提供不同类型…

iview实现table里面每行数据的跳转

我的需求是跳转到第三方网站&#xff0c;看官方是写了如何跳转站内路由&#xff0c;不符合我的要求&#xff0c;在csdn发现了一篇文章&#xff0c;我贴一下代码 <template><Table border :columns"ReportColumns" :data"ReportData"><templ…

odoo16 库存初始化 excel导入问题

最近在为一家公司实施odoo时&#xff0c;发现库存模块实施过程中按用户实际&#xff0c;产品初始化就是个问题。下面一一记录下 一个新公司&#xff0c;产品都有上百种&#xff0c;甚致几千种&#xff0c;如何把现有产品数据录入系统就是个不小的活。odoo16是有导入导出功能不…

悟空crm二次开发 增加客户保护功能 (很久没有消息,但是有觉得有机会的客户)就进入了保护转态

需求&#xff1a;客户信息录入不限数量&#xff0c;但是录入的信息1个月内只有自己和部门领导能看到&#xff0c;如果1个月内未成交或者未转移至自己的客保 则掉入公海所有人可见&#xff0c;这里所说的客保就是现在系统自带的客保 1、需求思维导图 2、新增保护按钮 3、点击该…