基于pytorch使用特征图输出进行特征图可视化

使用特征图输出进行特征图可视化

文章目录

  • 前言
  • 效果展示
  • 获取某一层特征图输出
      • 原图
      • 方法一:使用IntermediateLayerGetter类
      • 方法二:使用hook机制(推荐)
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了基于pytorch使用特征图输出进行特征图可视化的方法

特征图输出就是某个图像(序列)经过该层时的输出


以下是本篇文章正文内容

效果展示

在这里插入图片描述

获取某一层特征图输出

原图

在这里插入图片描述

方法一:使用IntermediateLayerGetter类

# 返回输出结果
import randomimport cv2
import torchvision
import torch
from matplotlib import pyplot as plt
import numpy as np
from torchvision import transforms
from torchvision import models# 定义函数,随机从0-end的一个序列中抽取size个不同的数
def random_num(size, end):range_ls = [i for i in range(end)]num_ls = []for i in range(size):num = random.choice(range_ls)range_ls.remove(num)num_ls.append(num)return num_lspath = "img_1.png"
transformss = transforms.Compose([transforms.ToTensor(),transforms.Resize((224, 224)),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# 注意如果有中文路径需要先解码,最好不要用中文
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 转换维度
img = transformss(img).unsqueeze(0)model = models.resnet50(pretrained=True)
new_model = torchvision.models._utils.IntermediateLayerGetter(model, {'layer1': '1', 'layer2': '2', "layer3": "3"})
out = new_model(img)tensor_ls = [(k, v) for k, v in out.items()]# 这里选取layer2的输出画特征图
v = tensor_ls[1][1]# 选择目标卷积层
target_layer = model.layer2[2]
"""
如果要选layer3的输出特征图只需把第一个索引值改为2,即:
v=tensor_ls[2][1]
只需把第一个索引更换为需要输出的特征层对应的位置索引即可
"""
# 取消Tensor的梯度并转成三维tensor,否则无法绘图
v = v.data.squeeze(0)print(v.shape)  # torch.Size([512, 28, 28])# 随机选取25个通道的特征图
channel_num = random_num(25, v.shape[0])
plt.figure(figsize=(10, 10))
for index, channel in enumerate(channel_num):ax = plt.subplot(5, 5, index + 1, )plt.imshow(v[channel, :, :])
plt.savefig("./img/feature.jpg", dpi=300)

输出的结果如下:
在这里插入图片描述

方法二:使用hook机制(推荐)

如下代码所示:

# 返回输出结果
import randomimport cv2
import torchvision
import torch
from matplotlib import pyplot as plt
import numpy as np
from torchvision import transforms
from torchvision import models# 定义函数,随机从0-end的一个序列中抽取size个不同的数
def random_num(size, end):range_ls = [i for i in range(end)]num_ls = []for i in range(size):num = random.choice(range_ls)range_ls.remove(num)num_ls.append(num)return num_lspath = "img_1.png"
transformss = transforms.Compose([transforms.ToTensor(),transforms.Resize((224, 224)),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# 注意如果有中文路径需要先解码,最好不要用中文
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 转换维度
img = transformss(img).unsqueeze(0)model = models.resnet50(pretrained=True)# 选择目标层
target_layer = model.layer2[2]
# 注册钩子函数,用于获取目标卷积层的输出
outputs = []
def hook(module, input, output):outputs.append(output)hook_handle = target_layer.register_forward_hook(hook)_ = model(img)v = outputs[-1]"""
如果要选layer3的输出特征图只需把第一个索引值改为2,即:
v=tensor_ls[2][1]
只需把第一个索引更换为需要输出的特征层对应的位置索引即可
"""
# 取消Tensor的梯度并转成三维tensor,否则无法绘图
v = v.data.squeeze(0)print(v.shape)  # torch.Size([512, 28, 28])# 随机选取25个通道的特征图
channel_num = random_num(25, v.shape[0])
plt.figure(figsize=(10, 10))
for index, channel in enumerate(channel_num):ax = plt.subplot(5, 5, index + 1, )plt.imshow(v[channel, :, :])
plt.savefig("./img/feature2.jpg", dpi=300)

总结

以上就是今天要讲的内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【 云原生 | K8S 】kubectl 详解

目录 1 kubectl 2 基本信息查看 2.1 查看 master 节点状态 2.2 查看命名空间 2.3 查看default命名空间的所有资源 2.4 创建命名空间app 2.5 删除命名空间app 2.6 在命名空间kube-public 创建副本控制器(deployment)来启动Pod(nginx-wl…

大数据-之LibrA数据库系统告警处理(ALM-12036 license文件即将过期)

告警解释 系统每天零点检查一次当前系统中的license文件,如果当前时间距离过期时间不足60天,则license文件即将过期,产生该告警。 当重新导入一个正常license,告警恢复。 说明: 如果当前集群使用节点数小于等于10节…

RLHF的替代算法之DPO原理解析:从Zephyr的DPO到Claude的RAILF

前言 本文的成就是一个点顺着一个点而来的,成文过程颇有意思 首先,如上文所说,我司正在做三大LLM项目,其中一个是论文审稿GPT第二版,在模型选型的时候,关注到了Mistral 7B(其背后的公司Mistral AI号称欧洲…

049-第三代软件开发-软件部署脚本(一)

第三代软件开发-软件部署脚本(一) 文章目录 第三代软件开发-软件部署脚本(一)项目介绍软件部署脚本(一)其他方式 关键字: Qt、 Qml、 bash、 shell、 脚本 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML(Qt Meta-Object…

nfs配置

1.NFS介绍 NFS就是Network File System的缩写,它最大的功能就是可以通过网络,让不同的机器、不同的操 作系统可以共享彼此的文件。 NFS服务器可以让PC将网络中的NFS服务器共享的目录挂载到本地端的文 件系统中,而在本地端的系统中来看&#…

【Git】Gui图形化管理、SSH协议私库集成IDEA使用

一、Gui图形化界面使用 1、根据自己需求打开管理器 2、克隆现有的库 3、图形化界面介绍 1、首先在本地仓库更新一个代码文件,进行使用: 2、进入图形管理界面刷新代码资源: 3、点击Stage changed 跟踪文件,将文件处于暂存区 4、通过…

详解机器学习最优化算法

前言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,小编将对机器学习中所使用的…

算法之路(一)

🖊作者 : D. Star. 📘专栏 :算法小能手 😆今日分享 : 如何学习? 在学习的过程中,不仅要知道如何学习,还要知道避免学习的陷阱。1. 睡眠不足;2. 被动学习和重读;3. 强调标记或画线&am…

使用Ruby编写通用爬虫程序

目录 一、引言 二、环境准备 三、爬虫程序设计 1. 抓取网页内容 2. 解析HTML内容 3. 提取特定信息 4. 数据存储 四、优化和扩展 五、结语 一、引言 网络爬虫是一种自动抓取互联网信息的程序。它们按照一定的规则和算法,遍历网页并提取所需的信息。使用Rub…

初识Linux:目录路径

目录 提示:以下指令均在Xshell 7 中进行 一、基本指令: 二、文件 文件内容文件属性 三、ls 指令拓展 1、 ls -l : 2、ls -la: 3、ls [目录名] : 4、ls -ld [目录名]: 四、Linux中的文件和…

串口通信(11)-CRC校验介绍算法

本文为博主 日月同辉,与我共生,csdn原创首发。希望看完后能对你有所帮助,不足之处请指正!一起交流学习,共同进步! > 发布人:日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…

2023.11.10联赛 T3题解

题目大意 题目思路 感性理解一下,将一个数的平方变成多个数平方的和,为了使代价最小,这些数的大小应该尽可能的平均。 我们可以将 ∣ b i − a i ∣ |b_i-a_i| ∣bi​−ai​∣放入大根堆,同时将这个数划分的次数以及多划分一段减…

Xmake v2.8.5 发布,支持链接排序和单元测试

Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。 它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好&#x…

java传base64返回给数据报404踩坑

一、问题复现 1.可能因为base64字符太长,导致后端处理时出错,表现为前端请求报400错误; 这一步debug进去发现base64数据是正常传值的 所以排除掉不是后端问题,但是看了下前端请求,猜测可能是转换base64时间太长数据过大导致的404 2.前端传…

FPGA设计过程中有关数据之间的并串转化

1.原理 并串转化是指的是完成串行传输和并行传输两种传输方式之间的转换的技术,通过移位寄存器可以实现串并转换。 串转并,将数据移位保存在寄存器中,再将寄存器的数值同时输出; 并转串,将数据先进行移位&#xff0…

AI:74-基于深度学习的宠物品种识别

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…

OpenHarmony,奏响中国基础软件的“光辉岁月”

梦想需要多久的时间,多少血和泪,才能慢慢实现? 天地间任我展翅高飞,谁说那是天真的预言? 《光辉岁月》歌词中的这两个问题,恰好可以送给今天的中国基础软件事业。 曾几何时,我们认为中国基础软件…

使用jdk21预览版 --enable-preview

异常 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.10.1:compile (default-compile) on project sb3: Compilation failure [ERROR] --enable-preview 一起使用时无效 [ERROR] (仅发行版 21 支持预览语言功能) 解决…

Matlab导出高清图片方法

一、背景 使用matlab绘制图片后,需要将图片导出为.jpg或.eps格式以便后期使用。但通过文件–另存为.jpg时,并没有清晰度选择,导出的图片只有30几k,以至于图片很模糊。 二、Matlab导出高清图片方法 文件—导出设置 1、大小&…

Unreal Engine 学习笔记 (3)—— 导入资源

1.导入FBX文件 打开系统文件管理器按下鼠标左键拖动fbx文件到UE编辑器中松开鼠标左键在弹出对话框FBX导入选项页面中,选择对应的骨骼 重定向骨骼 拖动UE4的walk_strafe_back.fbx文件到UE5编辑器中 在弹出的FBX导入选项对话框中选择UE4对应的骨骼 使用重定向资产…